51nod 1021 石子归并(dp)

时间:2023-03-08 19:44:44

51nod 1021 石子归并

题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最后dp[1][n]即为所求结果。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define CLR(a,b) memset((a),(b),sizeof((a)))
using namespace std; const int inf = 0x3f3f3f3f;
const int N = ;
int n;
int a[N];
int dp[N][N];//i到j合并的最小值
int sum[N];
int main(){
int t, i, j, k, len;
sum[] = ;
scanf("%d", &n);
for(i = ; i <= n; ++i){
scanf("%d", &a[i]);
sum[i] = sum[i - ] + a[i];
}
for(i = ;i <= n; ++i)
dp[i][i] = ;
for(len = ; len <= n; ++len){//合并的长度
for(i = ; i <= n - len + ; ++i){//起点
j = i + len - ;//终点
dp[i][j] = inf;
for(k = i; k < j; ++k){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+][j] + sum[j] - sum[i-]);
}
}
}
printf("%d\n", dp[][n]);
return ;
}