模板学习实践二 pointer

时间:2023-03-08 19:40:57
模板学习实践二 pointer

c++ template学习记录

使用模板将实际类型的指针进行封装

当变量退出作用域 自动delete

// 1111.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" template <typename T>
class Holder {
private:
T* ptr; // refers to the object it holds (if any) public:
// default constructor: let the holder refer to nothing
Holder() : ptr(0) {
} // constructor for a pointer: let the holder refer to where the pointer refers
explicit Holder(T* p) : ptr(p) {
} // destructor: releases the object to which it refers (if any)
~Holder() {
delete ptr;
} // assignment of new pointer
Holder<T>& operator= (T* p) {
delete ptr;
ptr = p;
return *this;
} // pointer operators
T& operator* () const {
return *ptr;
} T* operator-> () const {
return ptr;
} // get referenced object (if any)
T* get() const {
return ptr;
} // release ownership of referenced object
void release() {
ptr = 0;
} // exchange ownership with other holder
void exchange_with(Holder<T>& h) {
std::swap(ptr, h.ptr);
} // exchange ownership with other pointer
void exchange_with(T*& p) {
std::swap(ptr, p);
} private:
// no copying and copy assignment allowed
Holder(Holder<T> const&);
Holder<T>& operator= (Holder<T> const&);
}; class Something {
public:
void perform() const {
}
}; void do_two_things()
{
Holder<Something> first(new Something);
first->perform(); Holder<Something> second(new Something);
second->perform();
} int main()
{
do_two_things();
}

  

// 1111111.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <stddef.h>
#include <iostream>
#include <vector> using namespace std; size_t* alloc_counter()
{
return ::new size_t;
} void dealloc_counter(size_t* ptr)
{
::delete ptr;
} class SimpleReferenceCount {
private:
size_t* counter; // the allocated counter
public:
SimpleReferenceCount() {
counter = NULL;
} // default copy constructor and copy-assignment operator
// are fine in that they just copy the shared counter public:
// allocate the counter and initialize its value to one:
template<typename T> void init(T*) {
counter = alloc_counter();
*counter = 1;
} // dispose of the counter:
template<typename T> void dispose(T*) {
dealloc_counter(counter);
} // increment by one:
template<typename T> void increment(T*) {
++*counter;
} // decrement by one:
template<typename T> void decrement(T*) {
--*counter;
} // test for zero:
template<typename T> bool is_zero(T*) {
return *counter == 0;
}
}; class StandardArrayPolicy {
public:
template<typename T> void dispose(T* array) {
delete[] array;
}
}; class StandardObjectPolicy {
public:
template<typename T> void dispose(T* object) {
delete object;
}
}; template<typename T,
typename CounterPolicy = SimpleReferenceCount,
typename ObjectPolicy = StandardObjectPolicy>
class CountingPtr : private CounterPolicy, private ObjectPolicy {
private:
// shortcuts:
typedef CounterPolicy CP;
typedef ObjectPolicy OP; T* object_pointed_to; // the object referred to (or NULL if none) public:
// default constructor (no explicit initialization):
CountingPtr() {
this->object_pointed_to = NULL;
} // a converting constructor (from a built-in pointer):
explicit CountingPtr(T* p) {
this->init(p); // init with ordinary pointer
} // copy constructor:
CountingPtr(CountingPtr<T, CP, OP> const& cp)
: CP((CP const&)cp), // copy policies
OP((OP const&)cp) {
this->attach(cp); // copy pointer and increment counter
} // destructor:
~CountingPtr() {
this->detach(); // decrement counter
// (and dispose counter if last owner)
} // assignment of a built-in pointer
CountingPtr<T, CP, OP>& operator= (T* p) {
// no counting pointer should point to *p yet:
assert(p != this->object_pointed_to);
this->detach(); // decrement counter
// (and dispose counter if last owner)
this->init(p); // init with ordinary pointer
return *this;
} // copy assignment (beware of self-assignment):
CountingPtr<T, CP, OP>&
operator= (CountingPtr<T, CP, OP> const& cp) {
if (this->object_pointed_to != cp.object_pointed_to) {
this->detach(); // decrement counter
// (and dispose counter if last owner)
CP::operator=((CP const&)cp); // assign policies
OP::operator=((OP const&)cp);
this->attach(cp); // copy pointer and increment counter
}
return *this;
} // the operators that make this a smart pointer:
T* operator-> () const {
return this->object_pointed_to;
} T& operator* () const {
return *this->object_pointed_to;
} // additional interfaces will be added later
//... private:
// helpers:
// - init with ordinary pointer (if any)
void init(T* p) {
if (p != NULL) {
CounterPolicy::init(p);
}
this->object_pointed_to = p;
} // - copy pointer and increment counter (if any)
void attach(CountingPtr<T, CP, OP> const& cp) {
this->object_pointed_to = cp.object_pointed_to;
if (cp.object_pointed_to != NULL) {
CounterPolicy::increment(cp.object_pointed_to);
}
} // - decrement counter (and dispose counter if last owner)
void detach() {
if (this->object_pointed_to != NULL) {
CounterPolicy::decrement(this->object_pointed_to);
if (CounterPolicy::is_zero(this->object_pointed_to)) {
// dispose counter, if necessary:
CounterPolicy::dispose(this->object_pointed_to);
// use object policy to dispose the object pointed to:
ObjectPolicy::dispose(this->object_pointed_to);
}
}
}
}; void test1()
{
std::cout << "\ntest1():\n";
CountingPtr<int> p0;
{
CountingPtr<int> p1(new int(42));
std::cout << "*p1: " << *p1 << std::endl; *p1 = 17;
std::cout << "*p1: " << *p1 << std::endl; CountingPtr<int> p2 = p1;
std::cout << "*p2: " << *p2 << std::endl; *p1 = 33;
std::cout << "*p2: " << *p2 << std::endl; p0 = p2;
std::cout << "*p0: " << *p0 << std::endl; ++*p0;
++*p1;
++*p2;
std::cout << "*p0: " << *p0 << std::endl;
std::cout << "*p1: " << *p1 << std::endl;
std::cout << "*p2: " << *p2 << std::endl;
}
std::cout << "after block: *p0: " << *p0 << std::endl;
} void test2()
{
std::cout << "\ntest2():\n";
{ CountingPtr<int> p0(new int(42));
CountingPtr<int> p2 = p0;
}
CountingPtr<int> p1(new int(42)); std::cout << "qqq" << std::endl; std::vector<CountingPtr<int> > coll;
std::cout << "qqq" << std::endl;
coll.push_back(p1);
std::cout << "qqq" << std::endl;
coll.push_back(p1);
std::cout << "qqq" << std::endl; std::cout << "qqq" << std::endl; ++*p1;
++*coll[0];
std::cout << *coll[1] << std::endl;
} int main()
{
test1();
test2();
}