Chapter6: question 43 - 45

时间:2023-03-08 19:26:17

43.  投 n 个骰子,计算点数和出现的概率

递归求解:(空间 O(5*n+1),时间 O(6n))

void count(int N, int curN, int sum, int record[])
{
if(curN == 0){ ++record[sum - N]; return;}
for(int i = 1; i <= 6; ++i)
count(N, curN-1, sum+i, record);
}
void occursNumber(int N, int record[])
{
if(N < 1) return;
count(N, N, 0, record);
}

非递归求解:(空间 O(12*n + 2),时间 O(6*n2))

#include <iostream>
#include <cstring>
using namespace std;
void occursNumber(unsigned N, unsigned record[])
{
if(N < 1) return;
unsigned *tem = new unsigned[6*N +1];
memset(tem, 0, (6*N+1)*sizeof(unsigned));
bool flag = 1;
for(int i = 1; i <= 6; ++i)
tem[i] = 1; for(int k = 2; k <= N; ++k)
{
if(flag)
{
for(int i = 0; i < k; ++i)
record[i] = 0;
for(int i = k; i <= 6*k; ++i)
{
record[i] = 0;
for(int j = 1;j <= i && j <= 6; ++j)
record[i] += tem[i-j];
}
}
else
{
for(int i = 0; i < k; ++i)
tem[i] = 0;
for(int i = k; i <= 6*k; ++i)
{
tem[i] = 0;
for(int j = 1; j <= i && j <= 6; ++j)
tem[i] += record[i-j];
}
}
flag ^= 1;
}
if(N & 1)
{
for(int i = N; i <= 6*N; ++i)
record[i] = tem[i];
}
delete[] tem;
}
unsigned long long pow(unsigned exponent)
{
if(exponent < 1) return 0;
unsigned long long result = 6;
unsigned long long tem = 1;
while(exponent != 1)
{
if(exponent & 1) tem *= result;
result *= result;
exponent >>= 1;
}
result *= tem;
return result;
}
int main(){
unsigned N, S;
unsigned long long total;
cout << "input the number of dice: N " << endl << "cin >> ";
cin >> N;
total = pow(N);
cout << "the total of all number occurs is : " << total << endl;
cout << "=============================" << endl;
cout << "input the Sum [N, 6N]" << endl;
unsigned *record = new unsigned[6*N + 1];
memset(record, 0, (6*N+1)*sizeof(unsigned));
occursNumber(N, record);
while(true)
{
cout << "cin >> ";
cin >> S;
if(S >= N && S <= 6*N)
cout << record[S] << endl;
if(getchar() == 'q') break;
}
delete[] record; return 0;
}

Chapter6: question 43 - 45

44. 取 k 张扑克牌,看其是否是顺子。

大小王用 0 表示,可以看成任意数字。

bool isContinuous(int data[], int length)
{
if(data == NULL || length < 1) return false; qsort(data, length, sizeof(int), cmp);
int i;
int num0 = 0, numGap = 0;
for(i = 0; data[i] == 0 && i < length; ++i)
++num0;
for(; i < length-1; ++i)
{
if(data[i] == data[i+1]) return false;
numGap += data[i+1] - data[i] - 1;
}
return (numGap <= num0 ? true : false);
}
int cmp(const void *arg1, const void* arg2)
{
return *((int*)arg1) > *((int*)arg2);
}

45. 圆圈中最后剩下的数字。

GO:约瑟夫问题

Chapter6: question 43 - 45