hdu 5288 OO’s Sequence(计数)

时间:2023-03-08 19:06:07
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (+).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=^) indicating the size of array
Second line:contain n numbers ai(<ai<=)
Output
For each tests: ouput a line contain a number ans.
Sample Input
    
Sample Output

Author
FZUACM
Source

题意:

本来的题意问  枚举所有i,j ,1<=i<=j<=n,  然后计算f(i,j)和是多少。

f(l,r)的值 是 输入的数组下标 l到r中有多少 数是无法被这个区间 任意一个数整除的。 

 

做法:

转换种思想就是 某个数num[i],在多少个区间内 可以不被区间其他任何数整除。  答案加上区间个数。

所以 可以左右两边枚举过来。

以左边枚举过来为例:

把最近出现的数 记录下来,记录到 has数组。   如num[i]      记录成has[num[i]]=i     

 

然后把每个数的因子枚举,判断最近左边出现因子在哪。  然后那个位子+1 就是左端点了。

 

在同样处理出右端点, 左右端点知道就很容易算出num[i]在多少区间内符合要求 加到ans里。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<stdlib.h>
#include<map>
#include<vector>
using namespace std;
#define N 100006
#define M 10006
#define MOD 1000000007
int n;
int vis[M];
int a[N];
vector<int> G[M];
int L[N];
int R[N];
void init(){
for(int i=;i<M;i++){
for(int j=;j<=i;j++){
if(i%j==){
G[i].push_back(j);
}
}
}
}
int main()
{
init();
while(scanf("%d",&n)==){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
memset(vis,,sizeof(vis));
memset(L,-,sizeof(L));
memset(R,-,sizeof(R));
for(int i=;i<=n;i++){
for(int j=;j<G[a[i]].size();j++){
int tmp=G[a[i]][j];
if(vis[tmp]){
if(a[i]%tmp==){
if(L[i]!=-){
L[i]=max(L[i],vis[tmp]+);
}
else{
L[i]=vis[tmp]+;
}
} }
}
vis[a[i]]=i;
}
memset(vis,,sizeof(vis));
for(int i=n;i>=;i--){
for(int j=;j<G[a[i]].size();j++){
int tmp=G[a[i]][j];
if(vis[tmp]){
if(a[i]%tmp==){
if(R[i]!=-){
R[i]=min(R[i],vis[tmp]-);
}
else{
R[i]=vis[tmp]-;
}
} }
}
vis[a[i]]=i;
}
int ans=;
for(int i=;i<=n;i++){
if(L[i]==-){
L[i]=;
}
if(R[i]==-){
R[i]=n;
}
}
for(int i=;i<=n;i++){
ans=(ans+(i-L[i]+)*(R[i]-i+))%MOD;
}
printf("%d\n",ans);
}
return ;
}