scikit-FEM-例2-用Morley元在方形区域上解板弯曲问题

时间:2023-03-08 19:04:43
"""
Author: kinnala Solve the Kirchhoff plate bending problem in a unit square
with clamped boundary conditions using the nonconforming
Morley element. Demonstrates also the visualization of
higher order solutions using 'GlobalBasis.refinterp'.
"""
from skfem import *
import numpy as np

调入 skfem 模块

调入数值运算 numpy 模块

m = MeshTri()
m.refine(3)

三角形剖分网格,加密  $3$ 次

e = ElementTriMorley()
map = MappingAffine(m)
ib = InteriorBasis(m, e, map, 4)

ElementTriMorley:  非协调有限元 $ Morley$ 元

MappingAffine: 仿射变换

InteriorBasis:内部节点基函数

 @bilinear_form
def bilinf(u, du, ddu, v, dv, ddv, w):
# plate thickness
d = 1.0
E = 1.0
nu = 0.3 def C(T):
trT = T[0,0] + T[1,1]
return np.array([[E/(1.0+nu)*(T[0, 0]+nu/(1.0-nu)*trT), E/(1.0+nu)*T[0, 1]],
[E/(1.0+nu)*T[1, 0], E/(1.0+nu)*(T[1, 1]+nu/(1.0-nu)*trT)]]) def Eps(ddU):
return np.array([[ddU[0][0], ddU[0][1]],
[ddU[1][0], ddU[1][1]]]) def ddot(T1, T2):
return T1[0, 0]*T2[0, 0] +\
T1[0, 1]*T2[0, 1] +\
T1[1, 0]*T2[1, 0] +\
T1[1, 1]*T2[1, 1] return d**3/12.0*ddot(C(Eps(ddu)), Eps(ddv))

调入双线性形式模块@bilinear_form

定义 双线性函数 bilinf:{

定义函数C(T)

定义函数Eps(ddU)

定义函数 ddot(T1,T2)         }

@linear_form
def linf(v, dv, ddv, w):
return 1.0*v

调入线性形式模块@linear_form

定义 线性函数 linf

K = asm(bilinf, ib)
f = asm(linf, ib)

组装刚度矩阵  $K$

组装质量向量  $f$

x, D = ib.find_dofs()
I = ib.dofnum.complement_dofs(D)

*度 $dof$

x[I] = solve(*condense(K, f, I=I))

求解方程 $ Kx=f$

if __name__ == "__main__":
M, X = ib.refinterp(x, 3)
ax = m.draw()
M.plot(X, smooth=True, edgecolors='', ax=ax)
M.show()

ib.refinterp(x,3):$3$ 次插值

scikit-FEM-例2-用Morley元在方形区域上解板弯曲问题