借助CatGPT让turtlesim小乌龟画曲线

时间:2022-07-04 00:43:06

注意这里是CatGPT,不等同OpenAI的ChatGPT,但是用起来十分方便,效果也还行。

详细说明ROS机器人turtlesim绘制曲线需要注意哪些

ROS机器人turtlesim绘制曲线需要注意以下几点:
绘制曲线前需要设置好turtlesim的初始位置和方向,确保绘制的曲线不会超出屏幕范围。
绘制曲线时需要控制turtlesim的速度和角速度,避免曲线过于密集或过于稀疏。
绘制曲线时需要注意turtlesim的转向方式,可以使用左转或右转命令来控制曲线的形状。
绘制曲线时需要注意turtlesim的移动距离和旋转角度,可以通过调整这些参数来控制曲线的长度和形状。
绘制曲线时需要注意turtlesim的绘制精度,可以通过调整绘制步长和角度步长来控制曲线的平滑度和精度。

借助CatGPT让turtlesim小乌龟画曲线

第一个问题:

机器人创意设计详细大纲

回答:

机器人创意设计的详细大纲包括以下几个方面:机器人的功能需求、机器人的外形设计、机器人的动力系统、机器人的控制系统、机器人的传感器系统、机器人的通信系统、机器人的安全保障等。在设计机器人时,需要考虑到机器人的使用场景、使用目的、使用环境等因素,以确保机器人的设计符合实际需求,并且能够稳定、可靠地运行。

第二个问题:

能否给一段ROS机器人turtlesim画圆形轨迹的示例代码?

回答:

可以,以下是一段ROS机器人turtlesim画圆形轨迹的示例代码:

#include <ros/ros.h>
#include <geometry_msgs/Twist.h>
#include <math.h>

int main(int argc, char** argv)
{
    ros::init(argc, argv, "turtle_circle");
    ros::NodeHandle nh;
    ros::Publisher pub = nh.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 100);
    ros::Rate rate(10);

    double radius = 2.;
    double speed = 1.;
    double angular_speed = speed / radius;
    double angle = .;
    double time = .;
    double x = .;
    double y = .;

    while (ros::ok())
    {
        geometry_msgs::Twist msg;
        msg.linear.x = speed;
        msg.angular.z = angular_speed;

        pub.publish(msg);

        time += .1;
        angle = speed * time / radius;
        x = radius * cos(angle);
        y = radius * sin(angle);

        if (angle >= 2 * M_PI)
        {
            break;
        }

        rate.sleep();
    }

    return ;
}

能否给一段ROS机器人turtlesim画椭圆轨迹的示例代码?

可以,以下是一段ROS机器人turtlesim画椭圆轨迹的示例代码:

#!/usr/bin/env python

import rospy
from geometry_msgs.msg import Twist
from math import sin, cos, pi

def draw_ellipse(a, b):
    rospy.init_node('draw_ellipse', anonymous=True)
    pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
    rate = rospy.Rate(10)

    vel_msg = Twist()

    t = 
    while not rospy.is_shutdown():
        vel_msg.linear.x = a*cos(t)
        vel_msg.angular.z = b*sin(t)

        pub.publish(vel_msg)

        t += .1
        rate.sleep()

if __name__ == '__main__':
    draw_ellipse(2, 1)

这段代码可以让ROS机器人turtlesim画出一个长轴为2,短轴为1的椭圆轨迹。

问:

能否给一段ROS2机器人turtlesim画圆形轨迹的示例代码?

答:

可以,以下是一段ROS2机器人turtlesim画圆形轨迹的示例代码:

#include "rclcpp/rclcpp.hpp"
#include "geometry_msgs/msg/twist.hpp"
#include "turtlesim/msg/pose.hpp"

using namespace std::chrono_literals;

class TurtleSimNode : public rclcpp::Node
{
public:
  TurtleSimNode()
  : Node("turtlesim_node")
  {
    publisher_ = this->create_publisher<geometry_msgs::msg::Twist>("turtle1/cmd_vel", 10);
    subscriber_ = this->create_subscription<turtlesim::msg::Pose>("turtle1/pose", 10, std::bind(&TurtleSimNode::poseCallback, this, std::placeholders::_1));
    timer_ = this->create_wall_timer(500ms, std::bind(&TurtleSimNode::timerCallback, this));
  }

private:
  void poseCallback(const turtlesim::msg::Pose::SharedPtr pose)
  {
    current_pose_ = *pose;
  }

  void timerCallback()
  {
    auto msg = geometry_msgs::msg::Twist();
    msg.linear.x = 2.;
    msg.angular.z = 2.;
    publisher_->publish(msg);
  }

  rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr publisher_;
  rclcpp::Subscription<turtlesim::msg::Pose>::SharedPtr subscriber_;
  rclcpp::TimerBase::SharedPtr timer_;
  turtlesim::msg::Pose current_pose_;
};

int main(int argc, char **argv)
{
  rclcpp::init(argc, argv);
  auto node = std::make_shared<TurtleSimNode>();
  rclcpp::spin(node);
  rclcpp::shutdown();
  return ;
}

ros机器人操作系统教程

ROS (Robot Operating System) 是一个开源的机器人操作系统,它提供了一系列的工具和库来帮助开发者创建机器人应用。

如果您想学习 ROS,下面是一些可以入门学习的资源:

ROS 官方文档:http://wiki.ros.org/zh-cn/Documentation

ROS 入门教程:http://wiki.ros.org/zh-cn/ROS/Tutorials

ROS 官方入门课程:http://www.rosedu.org/

ROS 开发者社区:http://answers.ros.org/questions/

通过学习以上资源,您将对 ROS 有一个初步的了解,并可以开始编写自己的 ROS 程序。

ROS机器人轨迹跟踪PID控制器代码示例?

#include <ros/ros.h>
#include <geometry_msgs/Twist.h>
#include <nav_msgs/Odometry.h>

double Kp = 1.;
double Ki = .;
double Kd = .;
double error_sum = .;
double last_error = .;
double max_speed = .5;

void odomCallback(const nav_msgs::Odometry::ConstPtr& msg)
{
double x = msg->pose.pose.position.x;
double y = msg->pose.pose.position.y;
double theta = atan2(2 * msg->pose.pose.orientation.w * msg->pose.pose.orientation.z,
1 - 2 * msg->pose.pose.orientation.z * msg->pose.pose.orientation.z);

double target_x = 1.;
double target_y = 1.;
double target_theta = atan2(target_y - y, target_x - x);

double error = target_theta - theta;
error_sum += error;
double error_diff = error - last_error;
last_error = error;

double cmd_vel = Kp * error + Ki * error_sum + Kd * error_diff;
cmd_vel = std::min(std::max(cmd_vel, -max_speed), max_speed);

geometry_msgs::Twist twist;
twist.linear.x = cmd_vel;
twist.angular.z = .;
pub.publish(twist);
}

int main(int argc, char** argv)
{
ros::init(argc, argv, "pid_controller");
ros::NodeHandle nh;

ros::Subscriber sub = nh.subscribe("odom", 1, odomCallback);
ros::Publisher pub = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);

ros::spin();
return ;
}