- 网络加深
表现为在卷积神经网络的网络结构方面,在网络结构上增加卷积激活层,使得网络结构越变越深,深层次的网络在训练学习的过程中所考虑的因素就会更多,理论上会更加准确,但是网络的深度要与实际问题相关,在实践中折衷选取,过深过浅都不利于问题的解决。
增强卷积模块功能
表现为在一个卷积块中对特征提取的方式做出改变(也即变更传统卷积层的结构以获取更多的滤波作用),一般处于对feature map的尺度以及优化计算量的考量。
从分类的目标到检测的目标
同样利用CNN,但是设计网络的目标从分类的任务变更为了检测任务,检测任务不仅需要对图片中的区域进行特征提取、对结果进行分类,还要通过相关性的信息将目标框框出。
增加新的功能单元
丰富网络处理某一层输入或者输出的功能,此处的功能单元指传统卷积(Conv)、激活以及全连接、分类器之外的新增功能模块,例如LSTM增加的遗忘门,能够考虑历史数据,增加神经网络的功能。