作者:京东零售 冯晓涛
问题背景
京东生旅平台慧销系统,作为平台系统对接了多条业务线,主要进行各个业务线广告,召回等活动相关内容与能力管理。
最近根据告警发现内存持续升高,每隔2-3天会收到内存超过阈值告警,猜测可能存在内存泄漏的情况,然后进行排查。根据24小时时间段内存监控可以发现,容器的内存在持续上升:

问题排查
初步估计内存泄漏,查看24小时时间段jvm内存监控,排查jvm内存回收情况:

YoungGC和FullGC情况:

通过jvm内存分析和YoungGC与FullGC执行情况,可以判断可能原因如下:
1、 存在YoungGC但是没有出现FullGC,可能是对象进入老年代但是没有到达FullGC阈值,所以没有触发FullGC,对象一直存在老年代无法回收
2、 存在内存泄漏,虽然执行了YoungGC,但是这部分内存无法被回收
通过线程数监控,观察当前线程情况,发现当前线程数7427个,并且还在不断上升,基本判断存在内存泄漏,并且和线程池的不当使用有关:

通过JStack,获取线程堆栈文件并进行分析,排查为什么会有这么多线程:


发现通过线程池创建的线程数达7000+:

代码分析
分析代码中ThreadPoolExecutor的使用场景,发现在一个worker公共类中定义了一个线程池,worker执行时会使用线程池进行异步执行。
public class BackgroundWorker {
private static ThreadPoolExecutor threadPoolExecutor;
static {
init(15);
}
public static void init() {
init(15);
}
public static void init(int poolSize) {
threadPoolExecutor =
new ThreadPoolExecutor(3, poolSize, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
}
public static void shutdown() {
if (threadPoolExecutor != null && !threadPoolExecutor.isShutdown()) {
threadPoolExecutor.shutdownNow();
}
}
public static void submit(final Runnable task) {
if (task == null) {
return;
}
threadPoolExecutor.execute(() -> {
try {
task.run();
} catch (Exception e) {
e.printStackTrace();
}
});
}
}
广告缓存刷新worker使用线程池的代码:
public class AdActivitySyncJob {
@Scheduled(cron = "0 0/5 * * * ?")
public void execute() {
log.info("AdActivitySyncJob start");
List<DicDTO> locationList = locationService.selectLocation();
if (CollectionUtils.isEmpty(locationList)) {
return;
}
//中间省略部分无关代码
BackgroundWorker.init(40);
locationCodes.forEach(locationCode -> {
showChannelMap.forEach((key,value)->{
BackgroundWorker.submit(new Runnable() {
@Override
public void run() {
log.info("AdActivitySyncJob,locationCode:{},showChannel:{}",locationCode,value);
Result<AdActivityDTO> result = notLoginAdActivityOuterService.getAdActivityByLocationInner(locationCode, ImmutableMap.of("showChannel", value));
LocalCache.AD_ACTIVITY_CACHE.put(locationCode.concat("_").concat(value), result);
}
});
});
});
log.info("AdActivitySyncJob end");
}
@PostConstruct
public void init() {
execute();
}
}
原因分析:猜测是worker每次执行,都会执行init方法,创建新的线程池,但是局部创建的线程池并没有被关闭,导致内存中的线程池越来越多,ThreadPoolExecutor在使用完成后,如果不手动关闭,无法被GC回收。
分析验证
验证局部线程池ThreadPoolExecutor创建后,如果不手动关闭,是否会被GC回收:
public class Test {
private static ThreadPoolExecutor threadPoolExecutor;
public static void main(String[] args) {
for (int i=1;i<100;i++){
//每次均初始化线程池
threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
//使用线程池执行任务
for(int j=0;j<10;j++){
submit(new Runnable() {
@Override
public void run() {
}
});
}
}
//获取当前所有线程
ThreadGroup group = Thread.currentThread().getThreadGroup();
ThreadGroup topGroup = group;
// 遍历线程组树,获取根线程组
while (group != null) {
topGroup = group;
group = group.getParent();
}
int slackSize = topGroup.activeCount() * 2;
Thread[] slackThreads = new Thread[slackSize];
// 获取根线程组下的所有线程,返回的actualSize便是最终的线程数
int actualSize = topGroup.enumerate(slackThreads);
Thread[] atualThreads = new Thread[actualSize];
System.arraycopy(slackThreads, 0, atualThreads, 0, actualSize);
System.out.println("Threads size is " + atualThreads.length);
for (Thread thread : atualThreads) {
System.out.println("Thread name : " + thread.getName());
}
}
public static void submit(final Runnable task) {
if (task == null) {
return;
}
threadPoolExecutor.execute(() -> {
try {
task.run();
} catch (Exception e) {
e.printStackTrace();
}
});
}
}
输出:
Threads size is 302
Thread name : Reference Handler
Thread name : Finalizer
Thread name : Signal Dispatcher
Thread name : main
Thread name : Monitor Ctrl-Break
Thread name : pool-1-thread-1
Thread name : pool-1-thread-2
Thread name : pool-1-thread-3
Thread name : pool-2-thread-1
Thread name : pool-2-thread-2
Thread name : pool-2-thread-3
Thread name : pool-3-thread-1
Thread name : pool-3-thread-2
Thread name : pool-3-thread-3
Thread name : pool-4-thread-1
Thread name : pool-4-thread-2
Thread name : pool-4-thread-3
Thread name : pool-5-thread-1
Thread name : pool-5-thread-2
Thread name : pool-5-thread-3
Thread name : pool-6-thread-1
Thread name : pool-6-thread-2
Thread name : pool-6-thread-3
…………
执行结果分析,线程数量302个,局部线程池创建的核心线程没有被回收。
修改初始化线程池部分:
//初始化一次线程池
threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
for (int i=1;i<100;i++){
//使用线程池执行任务
for(int j=0;j<10;j++){
submit(new Runnable() {
@Override
public void run() {
}
});
}
}
输出:
Threads size is 8
Thread name : Reference Handler
Thread name : Finalizer
Thread name : Signal Dispatcher
Thread name : main
Thread name : Monitor Ctrl-Break
Thread name : pool-1-thread-1
Thread name : pool-1-thread-2
Thread name : pool-1-thread-3
解决方案
1、只初始化一次,每次执行worker复用线程池
2、每次执行完成后,关闭线程池
BackgroundWorker的定位是后台执行worker均进行线程池的复用,所以采用方案1,每次在static静态代码块中初始化,使用时无需重新初始化。
解决后监控:
jvm内存监控,内存不再持续上升:

线程池恢复正常且平稳:

Jstack文件,观察线程池数量恢复正常:

Dump文件分析线程池对象数量:

拓展
1、 如何关闭线程池
线程池提供了两个关闭方法,shutdownNow 和 shutdown 方法。
shutdownNow方法的解释是:线程池拒接收新提交的任务,同时立马关闭线程池,线程池里的任务不再执行。
shutdown方法的解释是:线程池拒接收新提交的任务,同时等待线程池里的任务执行完毕后关闭线程池。
2、 为什么threadPoolExecutor不会被GC回收
threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
局部使用后未手动关闭的线程池对象,会被GC回收吗?获取线上jump文件进行分析:

发现线程池对象没有被回收,为什么不会被回收?查看ThreadPoolExecutor.execute()方法:
如果当前线程数小于核心线程数,就会进入addWorker方法创建线程:


分析runWorker方法,如果存在任务则执行,否则调用getTask()获取任务:


发现workQueue.take()会一直阻塞,等待队列中的任务,因为Thread线程一直没有结束, 存在引用关系:ThreadPoolExecutor->Worker->Thread,因为存在GC ROOT的引用,所以无法被回收 。