一、通过操作Cortex-A7核,串口输入相应的命令,控制LED灯进行工作
1.例如在串口输入led1on,开饭led1灯点亮
2.例如在串口输入led1off,开饭led1灯熄灭
3.例如在串口输入led2on,开饭led2灯点亮
4.例如在串口输入led2off,开饭led2灯熄灭
5.例如在串口输入led3on,开饭led3灯点亮
6.例如在串口输入led3off,开饭led3灯熄灭
二、检测中断到来时,让LED灯状态取反,并且在串口工具上打印一句话
例如:当按键1按下之后,让LED1状态取反,并打印“LED1 down”
当按键2按下之后,让LED2状态取反,并打印“LED2 down”
当按键3按下之后,让LED3状态取反,并打印“LED3 down”
火焰传感器/人体红外/光电开关实验要求如上
作业一:
uart_led.h:
#ifndef __UART_LED_H__
#define __UART_LED_H__
#include "stm32mp1xx_rcc.h"
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_uart.h"
#include "stm32mp1xx_exti.h"
#include "stm32mp1xx_gic.h"
//重写strcmp函数
int strcmp(const char *s1, const char *s2);
//对LED灯初始化
void hal_led_init();
//对GPIO引脚初始化函数
void hal_gpio_init(gpio_t* gpiox, gpio_init_t* init, unsigned int pin);
//对GPIO引脚写操作函数
void hal_led_gpio_write(gpio_t* gpiox, unsigned int pin, gpio_status_t state);
//初始化串口
void hal_uart_init();
//发送一个字节
void uart_put_char(const char str);
//发送一个字符串
void uart_put_string(const char* str);
//接受一个字符
char uart_get_char();
//接收一个字符串
char* uart_get_string();
#endif
uart_led.c:
#include "uart_led.h"
extern void printf(const char *fmt, ...);
extern void delay_ms(int ms);
//重写strcmp函数
int strcmp(const char *s1, const char *s2)
{
int t = 0;
while(*s1 || *s2)
{
if(*s1 != *s2)
{
t = *s1 - *s2;
return t;
}
*s1 ++;
*s2 ++;
}
return t;
}
//对LED灯初始化
void hal_led_init()
{
//RCC时钟初始化
RCC->MP_AHB4ENSETR |= (0x3 << 4);
//结构体初始化
gpio_init_t init = {Output, Push_pull, Low_speed, No_up_down};
//GPIO初始化
hal_gpio_init(GPIOE, &init, GPIO_PIN_10);
hal_gpio_init(GPIOF, &init, GPIO_PIN_10);
hal_gpio_init(GPIOE, &init, GPIO_PIN_8);
}
//对GPIO引脚初始化函数
void hal_gpio_init(gpio_t* gpiox, gpio_init_t* init, unsigned int pin)
{
//GPIO输出模式初始化
gpiox->MODER &= (~(0x3 << (pin * 2)));
gpiox->MODER |= (init->moder << (pin * 2));
//GPIO输出类型初始化
gpiox->OTYPER &= (~(0x1 << pin));
gpiox->OTYPER |= (init->otyper << pin);
//GPIO输出速度初始化
gpiox->OSPEEDR &= (~(0x3 << (pin * 2)));
gpiox->OSPEEDR |= (init->ospeedr << (pin * 2));
//GPIO是否需要上下拉
gpiox->PUPDR &= (~(0x3 << (pin * 2)));
gpiox->PUPDR |= (init->pupdr << (pin * 2));
}
//对GPIO引脚写操作函数
void hal_led_gpio_write(gpio_t* gpiox, unsigned int pin, gpio_status_t state)
{
if(gpio_reset_t == state)
gpiox->ODR &= (~(0x1 << pin));
else
gpiox->ODR |= (0x1 << pin);
}
//初始化串口
void hal_uart_init()
{
/*********RCC章节初始化********/
RCC->MP_AHB4ENSETR |= (0x1 << 1);
RCC->MP_AHB4ENSETR |= (0x1 << 6);
RCC->MP_APB1ENSETR |= (0x1 << 16);
/*********GPIO章节初始化*******/
gpio_init_t init = {0};
init.moder = Alternate; //设置GPIO模式为复用模式
hal_gpio_init(GPIOB, &init, GPIO_PIN_2);
hal_gpio_init(GPIOG, &init, GPIO_PIN_11);
GPIOB->MODER |= (0x1 << 5);
GPIOB->AFRL &= (~(0xF << 8));
GPIOB->AFRL |= (0x1 << 11);
GPIOG->MODER |= (0x1 << 23);
GPIOG->AFRH &= (~(0xF << 12));
GPIOG->AFRH |= (0x3 << 13);
/*********UART章节初始化*******/
if(USART4->CR1 & (0x1 << 0)) //判断UE位是否为0
{
delay_ms(500);
USART4->CR1 &= (~(0x1 << 0));
}
USART4->CR1 &= (~(0x1 << 28)); //设置数据位宽度为8位
USART4->CR1 &= (~(0x1 << 12));
USART4->CR1 &= (~(0x1 << 15)); //设置串口采样率
USART4->CR1 &= (~(0x1 << 10)); //设置无奇偶校验位
USART4->CR2 &= (~(0x3 << 12)); //设置串口1位停止位
USART4->PRESC &= (~(0x3 << 3)); //设置串口不分频
USART4->BRR |= 0x22B; //设置串口波特率
USART4->CR1 |= (0x1 << 2); //串口发送器使能
USART4->CR1 |= (0x1 << 3); //串口接收器使能
USART4->CR1 |= (0x1 << 0); //串口使能
}
//发送一个字节
void uart_put_char(const char str)
{
//1.判断发送数据寄存器是否为空,为空才可以发送下一个字节
//ISR[7]
//读0:发送数据寄存器满,需要等待
//读1:发送数据寄存器空,才可以发送下一个字节数据
while(!(USART4->ISR & (0x1 << 7)));
//2.将要发送的字符写到发送数据寄存器中
USART4->TDR = str;
//3.判断发送数据是否完成 ISR[6]
while(!(USART4->ISR & (0x1 << 6)));
}
//发送一个字符串
void uart_put_string(const char* str)
{
//判断是否为'\0',一个字符一个字符发
for(int i = 0; str[i] != '\0'; i++)
{
uart_put_char(str[i]);
}
printf("\n");
}
//接受一个字符
char uart_get_char()
{
char ch;
//1.判断接收数据寄存器是否有数据可读 ISR[5]
while(!(USART4->ISR & (0x1 << 5)));
//2.将接收到的数据读出来
ch = USART4->RDR;
return ch;
}
char buff[50] = {0};
//接收一个字符串
char* uart_get_string()
{
int i = 0;
//for循环
//当键盘的回车键'\r'按下之后,字符串输入完成
for(i = 0; i < 48; i++)
{
buff[i] = uart_get_char();
if(buff[i] == '\r')
break;
uart_put_char(buff[i]);
}
//字符串补'\0'
buff[i] = '\0';
printf("\n");
//对接收到的字符串进行判断
if(strcmp(buff,"led1on") == 0)
{
hal_led_gpio_write(GPIOE, GPIO_PIN_10, gpio_set_t);
return "LED1_ON success";
}
else if(strcmp(buff,"led1off") == 0)
{
hal_led_gpio_write(GPIOE, GPIO_PIN_10, gpio_reset_t);
return "LED1_OFF success";
}
else if(strcmp(buff,"led2on") == 0)
{
hal_led_gpio_write(GPIOF, GPIO_PIN_10, gpio_set_t);
return "LED2_ON success";
}
else if(strcmp(buff,"led2off") == 0)
{
hal_led_gpio_write(GPIOF, GPIO_PIN_10, gpio_reset_t);
return "LED2_OFF success";
}
else if(strcmp(buff,"led3on") == 0)
{
hal_led_gpio_write(GPIOE, GPIO_PIN_8, gpio_set_t);
return "LED3_ON success";
}
else if(strcmp(buff,"led3off") == 0)
{
hal_led_gpio_write(GPIOE, GPIO_PIN_8, gpio_reset_t);
return "LED3_OFF success";
}
return "invalid instruction!";
}
main.c:
#include "uart_led.h"
extern void printf(const char *fmt, ...);
void delay_ms(int ms)
{
int i,j;
for(i = 0; i < ms;i++)
for (j = 0; j < 1800; j++);
}
int main()
{
hal_led_init(); //LED灯初始化
hal_uart_init(); //串口初始化
while(1)
{
uart_put_string(uart_get_string());
}
return 0;
}
测试结果如下:
作业二:
实验现象如下: