带你熟悉3种AQS的线程并发工具的用法

时间:2023-01-31 15:16:05
摘要:AQS 的全称为(AbstractQueuedSynchronizer),AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器。

【高并发】AQS中的CountDownLatch、Semaphore与CyclicBarrier核心用法》,作者: 冰 河。

AQS 的全称为(AbstractQueuedSynchronizer),AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器。本文主要讲述AQS中的CountDownLatch、Semaphore与CyclicBarrier核心用法。

CountDownLatch

概述

同步辅助类,通过它可以阻塞当前线程。也就是说,能够实现一个线程或者多个线程一直等待,直到其他线程执行的操作完成。使用一个给定的计数器进行初始化,该计数器的操作是原子操作,即同时只能有一个线程操作该计数器。

调用该类await()方法的线程会一直阻塞,直到其他线程调用该类的countDown()方法,使当前计数器的值变为0为止。每次调用该类的countDown()方法,当前计数器的值就会减1。当计数器的值减为0的时候,所有因调用await()方法而处于等待状态的线程就会继续往下执行。这种操作只能出现一次,因为该类中的计数器不能被重置。如果需要一个可以重置计数次数的版本,可以考虑使用CyclicBarrier类。

CountDownLatch支持给定时间的等待,超过一定的时间不再等待,使用时只需要在await()方法中传入需要等待的时间即可。此时,await()方法的方法签名如下:

public boolean await(long timeout, TimeUnit unit)

使用场景

在某些业务场景中,程序执行需要等待某个条件完成后才能继续执行后续的操作。典型的应用为并行计算:当某个处理的运算量很大时,可以将该运算任务拆分成多个子任务,等待所有的子任务都完成之后,父任务再拿到所有子任务的运算结果进行汇总。

代码示例

调用ExecutorService类的shutdown()方法,并不会第一时间内把所有线程全部都销毁掉,而是让当前已有的线程全部执行完,之后,再把线程池销毁掉。

示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CountDownLatchExample {
 private static final int threadCount = 200;
 public static void main(String[] args) throws InterruptedException {
 ExecutorService exec = Executors.newCachedThreadPool();
 final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
 for (int i = 0; i < threadCount; i++){
 final int threadNum = i;
 exec.execute(() -> {
 try {
 test(threadNum);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }finally {
 countDownLatch.countDown();
 }
 });
 }
 countDownLatch.await();
        log.info("finish");
 exec.shutdown();
 }
 private static void test(int threadNum) throws InterruptedException {
 Thread.sleep(100);
 log.info("{}", threadNum);
 Thread.sleep(100);
 }
}

支持给定时间等待的示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
@Slf4j
public class CountDownLatchExample {
 private static final int threadCount = 200;
 public static void main(String[] args) throws InterruptedException {
 ExecutorService exec = Executors.newCachedThreadPool();
 final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
 for (int i = 0; i < threadCount; i++){
 final int threadNum = i;
 exec.execute(() -> {
 try {
 test(threadNum);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }finally {
 countDownLatch.countDown();
 }
 });
 }
 countDownLatch.await(10, TimeUnit.MICROSECONDS);
        log.info("finish");
 exec.shutdown();
 }
 private static void test(int threadNum) throws InterruptedException {
 Thread.sleep(100);
 log.info("{}", threadNum);
 }
}

Semaphore

概述

控制同一时间并发线程的数目。能够完成对于信号量的控制,可以控制某个资源可被同时访问的个数。

提供了两个核心方法——acquire()方法和release()方法。acquire()方法表示获取一个许可,如果没有则等待,release()方法则是在操作完成后释放对应的许可。Semaphore维护了当前访问的个数,通过提供同步机制来控制同时访问的个数。Semaphore可以实现有限大小的链表。

使用场景

Semaphore常用于仅能提供有限访问的资源,比如:数据库连接数。

代码示例

每次获取并释放一个许可,示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
 private static final int threadCount = 200;
 public static void main(String[] args) throws InterruptedException {
 ExecutorService exec = Executors.newCachedThreadPool();
 final Semaphore semaphore = new Semaphore(3);
 for (int i = 0; i < threadCount; i++){
 final int threadNum = i;
 exec.execute(() -> {
 try {
 semaphore.acquire(); //获取一个许可
 test(threadNum);
 semaphore.release(); //释放一个许可
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
 }
 exec.shutdown();
 }
 private static void test(int threadNum) throws InterruptedException {
 log.info("{}", threadNum);
 Thread.sleep(1000);
 }
}

每次获取并释放多个许可,示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
 private static final int threadCount = 200;
 public static void main(String[] args) throws InterruptedException {
 ExecutorService exec = Executors.newCachedThreadPool();
 final Semaphore semaphore = new Semaphore(3);
 for (int i = 0; i < threadCount; i++){
 final int threadNum = i;
 exec.execute(() -> {
 try {
 semaphore.acquire(3); //获取多个许可
 test(threadNum);
 semaphore.release(3); //释放多个许可
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
 }
        log.info("finish");
 exec.shutdown();
 }
 private static void test(int threadNum) throws InterruptedException {
 log.info("{}", threadNum);
 Thread.sleep(1000);
 }
}

假设有这样一个场景,并发太高了,即使使用Semaphore进行控制,处理起来也比较棘手。假设系统当前允许的最高并发数是3,超过3后就需要丢弃,使用Semaphore也能实现这样的场景,示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
 private static final int threadCount = 200;
 public static void main(String[] args) throws InterruptedException {
 ExecutorService exec = Executors.newCachedThreadPool();
 final Semaphore semaphore = new Semaphore(3);
 for (int i = 0; i < threadCount; i++){
 final int threadNum = i;
 exec.execute(() -> {
 try {
 //尝试获取一个许可,也可以尝试获取多个许可,
 //支持尝试获取许可超时设置,超时后不再等待后续线程的执行
 //具体可以参见Semaphore的源码
 if (semaphore.tryAcquire()) { 
 test(threadNum);
 semaphore.release(); //释放一个许可
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
 }
        log.info("finish");
 exec.shutdown();
 }
 private static void test(int threadNum) throws InterruptedException {
 log.info("{}", threadNum);
 Thread.sleep(1000);
 }
}

CyclicBarrier

概述

是一个同步辅助类,允许一组线程相互等待,直到到达某个公共的屏障点,通过它可以完成多个线程之间相互等待,只有当每个线程都准备就绪后,才能各自继续往下执行后面的操作。

与CountDownLatch有相似的地方,都是使用计数器实现,当某个线程调用了CyclicBarrier的await()方法后,该线程就进入了等待状态,而且计数器执行加1操作,当计数器的值达到了设置的初始值,调用await()方法进入等待状态的线程会被唤醒,继续执行各自后续的操作。CyclicBarrier在释放等待线程后可以重用,所以,CyclicBarrier又被称为循环屏障。

使用场景

可以用于多线程计算数据,最后合并计算结果的场景

CyclicBarrier与CountDownLatch的区别

  • CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法进行重置,并且可以循环使用
  • CountDownLatch主要实现1个或n个线程需要等待其他线程完成某项操作之后,才能继续往下执行,描述的是1个或n个线程等待其他线程的关系。而CyclicBarrier主要实现了多个线程之间相互等待,直到所有的线程都满足了条件之后,才能继续执行后续的操作,描述的是各个线程内部相互等待的关系。
  • CyclicBarrier能够处理更复杂的场景,如果计算发生错误,可以重置计数器让线程重新执行一次。
  • CyclicBarrier中提供了很多有用的方法,比如:可以通过getNumberWaiting()方法获取阻塞的线程数量,通过isBroken()方法判断阻塞的线程是否被中断。

代码示例

示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CyclicBarrierExample {
 private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
 public static void main(String[] args) throws Exception {
 ExecutorService executorService = Executors.newCachedThreadPool();
 for (int i = 0; i < 10; i++){
 final int threadNum = i;
 Thread.sleep(1000);
 executorService.execute(() -> {
 try {
 race(threadNum);
 } catch (Exception e) {
 e.printStackTrace();
 }
 });
 }
executorService.shutdown();
 }
 private static void race(int threadNum) throws Exception{
 Thread.sleep(1000);
 log.info("{} is ready", threadNum);
 cyclicBarrier.await();
 log.info("{} continue", threadNum);
 }
}

设置等待超时示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.*;
@Slf4j
public class CyclicBarrierExample {
 private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
 public static void main(String[] args) throws Exception {
 ExecutorService executorService = Executors.newCachedThreadPool();
 for (int i = 0; i < 10; i++){
 final int threadNum = i;
 Thread.sleep(1000);
 executorService.execute(() -> {
 try {
 race(threadNum);
 } catch (Exception e) {
 e.printStackTrace();
 }
 });
 }
 executorService.shutdown();
 }
 private static void race(int threadNum) throws Exception{
 Thread.sleep(1000);
 log.info("{} is ready", threadNum);
 try{
 cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
 }catch (BrokenBarrierException | TimeoutException e){
 log.warn("BarrierException", e);
 }
 log.info("{} continue", threadNum);
 }
}

在声明CyclicBarrier的时候,还可以指定一个Runnable,当线程达到屏障的时候,可以优先执行Runnable中的方法。

示例代码如下:

package io.binghe.concurrency.example.aqs;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CyclicBarrierExample {
 private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5, () -> {
 log.info("callback is running");
 });
 public static void main(String[] args) throws Exception {
 ExecutorService executorService = Executors.newCachedThreadPool();
 for (int i = 0; i < 10; i++){
 final int threadNum = i;
 Thread.sleep(1000);
 executorService.execute(() -> {
 try {
 race(threadNum);
 } catch (Exception e) {
 e.printStackTrace();
 }
 });
 }
 executorService.shutdown();
 }
 private static void race(int threadNum) throws Exception{
 Thread.sleep(1000);
 log.info("{} is ready", threadNum);
 cyclicBarrier.await();
 log.info("{} continue", threadNum);
 }
}

 

点击关注,第一时间了解华为云新鲜技术~