下载地址:C++中文车牌识别检测系统源码
其目标是成为一个简单、高效、准确的非限制场景(unconstrained situation)下的车牌识别库。
相比于其他的车牌识别系统,EasyPR有如下特点:
- 它基于openCV这个开源库。这意味着你可以获取全部源代码,并且移植到opencv支持的所有平台。
- 它能够识别中文。例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
- 它的识别率较高。图片清晰情况下,车牌检测与字符识别可以达到80%以上的精度。
更新
本次更新版本是1.6正式版本,主要有以下几点更新:
-
修正了多项readme的文本提示。
-
增加了C#调用EasyPR的一个项目的链接,感谢 @zhang-can 同学。
注意
-
对于Opencv3.2或以上版本,如果碰到编译问题,例如“ANN_MLP”相关的错误,尝试将config.h中将#define CV_VERSION_THREE_ZERO改为#define CV_VERSION_THREE_TWO试试.
-
linux系统推荐使用Opencv3.2以上版本。3.2以下的版本例如3.0和3.1在识别时可能会出现车牌识别结果为空的情况。稳妥起见,建议都升级到最新的3.2版本。Windows版本没有这个问题。
待做的工作
- 完成一个CNN框架
- 替换ANN为CNN
- 增加新能源车的识别(待定)
- 增加两行车牌的识别(待定)
跨平台
目前除了windows平台以外,还有以下其他平台的EasyPR版本。一些平台的版本可能会暂时落后于主平台。
现在有一个无需配置opencv的1.5版本的懒人版。仅仅支持vs2013,也只能在debug和x86下运行,其他情况的话还是得配置opencv。感谢范文捷同学的帮助。页面里的两个文件都要下载,下载后用7zip解压。
版本 | 开发者 | 版本 | 地址 |
---|---|---|---|
C# | zhang-can | 1.5 | zhang-can/EasyPR-DLL-CSharp |
android | goldriver | 1.4 | linuxxx/EasyPR_Android |
linux | Micooz | 1.6 | 已跟EasyPR整合 |
ios | zhoushiwei | 1.3 | zhoushiwei/EasyPR-iOS |
mac | zhoushiwei,Micooz | 1.6 | 已跟EasyPR整合 |
java | fan-wenjie | 1.2 | fan-wenjie/EasyPR-Java |
懒人版 | fan-wenjie | 1.5 | git/oschina |
兼容性
当前EasyPR是基于opencv3.0版本开发的,3.0及以上的版本应该可以兼容,以前的版本可能会存在不兼容的现象。
例子
假设我们有如下的原始图片,需要识别出中间的车牌字符与颜色:
经过EasyPR的第一步处理车牌检测(PlateDetect)以后,我们获得了原始图片中仅包含车牌的图块:
接着,我们对图块进行OCR过程,在EasyPR中,叫做字符识别(CharsRecognize)。我们得到了一个包含车牌颜色与字符的字符串:
“蓝牌:苏EUK722”
示例
EasyPR的调用非常简单,下面是一段示例代码:
CPlateRecognize pr;
pr.setResultShow(false);
pr.setDetectType(PR_DETECT_CMSER);
vector<CPlate> plateVec;
Mat src = imread(filepath);
int result = pr.plateRecognize(src, plateVec);
我们首先创建一个CPlateRecognize的对象pr,接着设置pr的属性。
pr.setResultShow(false);
这句话设置EasyPR是否打开结果展示窗口,如下图。设置为true就是打开,否则就是关闭。在需要观看定位结果时,建议打开,快速运行时关闭。
pr.setDetectType(PR_DETECT_CMSER);
这句话设置EasyPR采用的车牌定位算法。CMER代表文字定位方法,SOBEL和COLOR分别代表边缘和颜色定位方法。可以通过"|"符号结合。
pr.setDetectType(PR_DETECT_COLOR | PR_DETECT_SOBEL);
除此之外,还可以有一些其他的属性值设置:
pr.setLifemode(true);
这句话设置开启生活模式,这个属性在定位方法为SOBEL时可以发挥作用,能增大搜索范围,提高鲁棒性。
pr.setMaxPlates(4);
这句话设置EasyPR最多查找多少个车牌。当一副图中有大于n个车牌时,EasyPR最终只会输出可能性最高的n个。
下面来看pr的方法。plateRecognize()这个方法有两个参数,第一个代表输入图像,第二个代表输出的车牌CPlate集合。
vector<CPlate> plateVec;
Mat src = imread(filepath);
int result = pr.plateRecognize(src, plateVec);
当返回结果result为0时,代表识别成功,否则失败。
CPlate类包含了车牌的各种信息,其中重要的如下:
CPlate plate = plateVec.at(i);
Mat plateMat = plate.getPlateMat();
RotatedRect rrect = plate.getPlatePos();
string license = plate.getPlateStr();
plateMat代表车牌图像,rrect代表车牌的可旋转矩形位置,license代表车牌字符串,例如“蓝牌:苏EUK722”。
这里说下如何去阅读如下图的识别结果。
第1行代表的是图片的文件名。
第2行代表GroundTruth车牌,用后缀(g)表示。第3行代表EasyPR检测车牌,用后缀(d)表示。两者形成一个配对,第4行代表两者的字符差距。
下面同上。本图片中有3个车牌,所有共有三个配对。最后的Recall等指标代表的是整幅图片的定位评价,考虑了三个配对的结果。
有时检测车牌的部分会用“无车牌”与“No string”替代。“无车牌”代表“定位不成功”,“No string”代表“定位成功但字符分割失败”。
目录结构
以下表格是本工程中所有目录的解释:
目录 | 解释 |
---|---|
src | 所有源文件 |
include | 所有头文件 |
test | 测试程序 |
model | 机器学习的模型 |
resources/text | 中文字符映射表 |
resources/train | 训练数据与说明 |
resources/image | 测试用的图片 |
resources/doc | 相关文档 |
tmp | 训练数据读取目录,需要自建 |
以下表格是resources/image目录中子目录的解释:
目录 | 解释 |
---|---|
general_test | GDTS(通用数据测试集) |
native_test | NDTS(本地数据测试集) |
tmp | Debug模式下EasyPR输出中间图片的目录,需要自建 |
以下表格是src目录中子目录的解释:
目录 | 解释 |
---|---|
core | 核心功能 |
preprocess | SVM预处理 |
train | 训练目录,存放模型训练的代码 |
util | 辅助功能 |
以下表格是src目录下一些核心文件的解释与关系:
文件 | 解释 |
---|---|
plate_locate | 车牌定位 |
plate_judge | 车牌判断 |
plate_detect | 车牌检测,是车牌定位与车牌判断功能的组合 |
chars_segment | 字符分割 |
chars_identify | 字符鉴别 |
chars_recognise | 字符识别,是字符分割与字符鉴别功能的组合 |
plate_recognize | 车牌识别,是车牌检测与字符识别的共有子类 |
feature | 特征提取回调函数 |
plate | 车牌抽象 |
core_func.h | 共有的一些函数 |
以下表格是test目录下文件的解释:
文件 | 解释 |
---|---|
main.cpp | 主命令行窗口 |
accuracy.hpp | 批量测试 |
chars.hpp | 字符识别相关 |
plate.hpp | 车牌识别相关 |
以下表格是train目录下文件的解释:
文件 | 解释 |
---|---|
ann_train.cpp | 训练二值化字符 |
annCh_train.hpp | 训练中文灰度字符 |
svm_train.hpp | 训练车牌判断 |
create_data.hpp | 生成合成数据 |
使用
请参考这里
下载地址:C++中文车牌识别检测系统源码