摘要:本文主要讲解常见的图像锐化和边缘检测方法,即Roberts算子和Prewitt算子。
本文分享自华为云社区《[Python从零到壹] 五十七.图像增强及运算篇之图像锐化Roberts、Prewitt算子实现边缘检测》,作者: eastmount。
一.图像锐化
由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰[1]。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是图像受到了平均或积分运算,因此可以对其进行逆运算,从而使图像变得清晰。微分运算是求信号的变化率,具有较强高频分量作用。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。这时需要开展图像锐化和边缘检测处理,加强原图像的高频部分,锐化突出图像的边缘细节,改善图像的对比度,使模糊的图像变得更清晰。
图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。通常使用灰度差分法对图像的边缘、轮廓进行处理,将其凸显。图像锐化的方法分为高通滤波和空域微分法,本章主要介绍Robert算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr算子等[2-3]。
1.一阶微分算子
一阶微分算子一般借助空域微分算子通过卷积完成,但实际上数字图像处理中求导是利用差分近似微分来进行的。梯度对应一阶导数,梯度算子是一阶导数算子。对一个连续函数f(x,y),它在位置(x,y)梯度可表示为一个矢量: