考虑线性方程组
其中,\(\mathrm{A}=(a_{ij})_{n\times n}\),\(\mathrm{b}=[b_1,b_2,\cdots,b_n]^{\mathrm{T}}\)。在线性代数的课程中,我们已经学习过Gauss消元法,具体操作是将矩阵A转化为“阶梯型”矩阵。为方便起见,本文仅仅讨论系数矩阵非奇异的方程组,此时,目标是将矩阵A转化为上三角矩阵,再执行回代过程,即可给出方程组的解。本文将给出在计算机上的具体操作及实例代码。
我们仅仅讨论对矩阵第一列的操作,剩余的操作可以以此类推,因而不再赘述。
在执行Gauss消去法时,我们将第一列对角元以下的元素全部变为零。记第一列消元操作后的增广矩阵为\([\mathrm{A}^{(1)},\mathrm{b}^{(1)}]\),容易知道
其中
观察到重复出现的结构\(\frac{a_{_{i1}}}{a_{_{11}}}\),我们记它为\(l_{i1}\),称为消元因子,并将它存储在原来\(a_{i1}\)的位置。在计算的过程中,先计算消元因子并存储在相应位置,再执行后续的算法。
对于后续部分的运算,在第k步,只要对矩阵\(A^{(k-1)}(k:n,k:n)\)执行相同操作即可。
二、列主元Gauss消去法
在执行Gauss消元法的过程中,如果\(a_{kk}^{(k-1)}\)相对于其他元素绝对值较小,则会产生较大的舍入误差,影响计算精度,为此,我们引入了列主元Gauss消去法,基于交换矩阵的行不影响线性方程组的解。
记执行完k-1步消元后的增广矩阵为\([\mathrm{A}^{(k-1)},\mathrm{b}^{(k-1)}]\)。考虑第k列对角元及其以下的部分。选择绝对值最大的元所在行,与当前行执行行交换,再进行Gauss消元法。
三、计算实例
用列主元Gauss消去法解以下线性方程组:
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double A_Extended[3][4]={0.5,1.1,3.1,6,2,4.5,3.6,0.02,5,0.96,6.5,0.96};
double X_solution[3];
for (int i=0;i<=2;i++)
{
int n=i;
for (int p=i+1;p<=2;p++)
{
if (fabs(A_Extended[p][i])>fabs(A_Extended[n][i]))
{
n=p;
}
}
for (int p=i;p<=2+1;p++)
{
double k=A_Extended[n][p];
A_Extended[n][p]=A_Extended[i][p];
A_Extended[i][p]=k;
}
for (int p=i+1;p<=2;p++)
{
A_Extended[p][i]=-A_Extended[p][i]/A_Extended[i][i];
for (int pco=i+1;pco<=2+1;pco++)
{
A_Extended[p][pco]=A_Extended[p][pco]+A_Extended[p][i]*A_Extended[i][pco];
}
}
}
X_solution[2]=A_Extended[2][3]/A_Extended[2][2];
for (int i=1;i>=0;i--)
{
double sum=0;
for (int k=2;k>i;k--)
{
sum=sum+A_Extended[i][k]*X_solution[k];
}
X_solution[i]=(A_Extended[i][3]-sum)/A_Extended[i][i];
}
cout<<X_solution[0]<<" "<<X_solution[1]<<" "<<X_solution[2]<<endl;
return 0;
}