29-LVS负载调度器

时间:2022-11-24 15:19:44

LVS:Linux Virtual Server,负载调度器,内核集成,章文嵩(花名 正明), 阿里的四层SLB(Server Load Balance)是基于LVS+keepalived实现

官网:​​https://github.com/alibaba/LVS​

LVS 工作原理:

VS根据请求报文的目标IP和目标协议及端口将其调度转发至某RS,根据调度算法来挑选RS。LVS是内核级功能,工作在INPUT链的位置,将发往INPUT的流量进行“处理”

[root@router ~]#grep -i -C 10 ipvs /boot/config-5.15.0-53-generic 
CONFIG_NETFILTER_XT_MATCH_DCCP=m
CONFIG_NETFILTER_XT_MATCH_DEVGROUP=m
CONFIG_NETFILTER_XT_MATCH_DSCP=m
CONFIG_NETFILTER_XT_MATCH_ECN=m
CONFIG_NETFILTER_XT_MATCH_ESP=m
CONFIG_NETFILTER_XT_MATCH_HASHLIMIT=m
CONFIG_NETFILTER_XT_MATCH_HELPER=m
CONFIG_NETFILTER_XT_MATCH_HL=m
CONFIG_NETFILTER_XT_MATCH_IPCOMP=m
CONFIG_NETFILTER_XT_MATCH_IPRANGE=m
CONFIG_NETFILTER_XT_MATCH_IPVS=m --> 模块化
CONFIG_NETFILTER_XT_MATCH_L2TP=m
CONFIG_NETFILTER_XT_MATCH_LENGTH=m
CONFIG_NETFILTER_XT_MATCH_LIMIT=m
CONFIG_NETFILTER_XT_MATCH_MAC=m
CONFIG_NETFILTER_XT_MATCH_MARK=m
CONFIG_NETFILTER_XT_MATCH_MULTIPORT=m
CONFIG_NETFILTER_XT_MATCH_NFACCT=m
CONFIG_NETFILTER_XT_MATCH_OSF=m
CONFIG_NETFILTER_XT_MATCH_OWNER=m
CONFIG_NETFILTER_XT_MATCH_POLICY=m
--
CONFIG_IP_SET_HASH_NETNET=m
CONFIG_IP_SET_HASH_NETPORT=m
CONFIG_IP_SET_HASH_NETIFACE=m
CONFIG_IP_SET_LIST_SET=m
CONFIG_IP_VS=m
CONFIG_IP_VS_IPV6=y
# CONFIG_IP_VS_DEBUG is not set
CONFIG_IP_VS_TAB_BITS=12

#
# IPVS transport protocol load balancing support
#
CONFIG_IP_VS_PROTO_TCP=y
CONFIG_IP_VS_PROTO_UDP=y
CONFIG_IP_VS_PROTO_AH_ESP=y
CONFIG_IP_VS_PROTO_ESP=y
CONFIG_IP_VS_PROTO_AH=y
CONFIG_IP_VS_PROTO_SCTP=y

#
# IPVS scheduler
#
CONFIG_IP_VS_RR=m
CONFIG_IP_VS_WRR=m
CONFIG_IP_VS_LC=m
CONFIG_IP_VS_WLC=m
CONFIG_IP_VS_FO=m
CONFIG_IP_VS_OVF=m
CONFIG_IP_VS_LBLC=m
CONFIG_IP_VS_LBLCR=m
CONFIG_IP_VS_DH=m
CONFIG_IP_VS_SH=m
CONFIG_IP_VS_MH=m
CONFIG_IP_VS_SED=m
CONFIG_IP_VS_NQ=m
CONFIG_IP_VS_TWOS=m

#
# IPVS SH scheduler
#
CONFIG_IP_VS_SH_TAB_BITS=8

#
# IPVS MH scheduler
#
CONFIG_IP_VS_MH_TAB_INDEX=12

#
# IPVS application helper
#
CONFIG_IP_VS_FTP=m
CONFIG_IP_VS_NFCT=y
CONFIG_IP_VS_PE_SIP=m

#
# IP: Netfilter Configuration
#
CONFIG_NF_DEFRAG_IPV4=m
CONFIG_NF_SOCKET_IPV4=m

LVS 集群类型中的术语

VS:Virtual Server,Director Server(DS), Dispatcher(调度器),Load Balancer
RS:Real Server(lvs), upstream server(nginx), backend server(haproxy)
CIP:Client IP
VIP:Virtual server IP VS外网的IP
DIP:Director IP VS内网的IP
RIP:Real server IP
*访问流程:CIP <--> VIP == DIP <--> RIP

LVS 集群的工作模式

  • lvs-nat:修改请求报文的目标IP,多目标IP的DNAT

29-LVS负载调度器


lvs-nat:本质是多目标IP的DNAT,通过将请求报文中的目标地址和目标端口修改为某挑出的RS的RIP和PORT实现转发
(1)RIP和DIP应在同一个IP网络,且应使用私网地址;RS的网关要指向DIP
(2)请求报文和响应报文都必须经由Director转发,Director易于成为系统瓶颈
(3)支持端口映射,可修改请求报文的目标PORT
(4)VS必须是Linux系统,RS可以是任意OS系统
  • lvs-dr:操纵封装新的MAC地址

29-LVS负载调度器

LVS-DR:Direct Routing,直接路由,LVS默认模式,应用最广泛,通过为请求报文重新封装一个MAC首部进行转发,源MAC是DIP所在的接口的MAC,目标MAC是某挑选出的RS的RIP所在接口的MAC地址;源IP/PORT,以及目标IP/PORT均保持不变

DR模式的特点:
1. Director和各RS都配置有VIP
2. 确保前端路由器将目标IP为VIP的请求报文发往Director
> 在前端网关做静态绑定VIP和Director的MAC地址
> 在RS上使用arptables工具
arptables -A IN -d $VIP -j DROP
arptables -A OUT -s $VIP -j mangle --mangle-ip-s $RIP
> 在RS上修改内核参数以限制arp通告及应答级别
/proc/sys/net/ipv4/conf/all/arp_ignore
/proc/sys/net/ipv4/conf/all/arp_announce
3. RS的RIP可以使用私网地址,也可以是公网地址;RIP与DIP在同一IP网络;RIP的网关不能指向DIP,以确保响应报文不会经由Director
4. RS和Director要在同一个物理网络
5. 请求报文要经由Director,但响应报文不经由Director,而由RS直接发往Client
6. 不支持端口映射(端口不能修改)
7. 无需开启 ip_forward
8. RS可使用大多数OS系统
  • lvs-tun:在原请求IP报文之外新加一个IP首部

29-LVS负载调度器

转发方式:不修改请求报文的IP首部(源IP为CIP,目标IP为VIP),而在原IP报文之外再封装一个IP首部(源IP是DIP,目标IP是RIP),将报文发往挑选出的目标RS;RS直接响应给客户端(源IP是VIP,目标IP是CIP)
TUN模式特点:
1. RIP和DIP可以不处于同一物理网络中,RS的网关一般不能指向DIP,且RIP可以和公网通信。也就是说集群节点可以跨互联网实现。DIP, VIP, RIP可以是公网地址
2. RealServer的tun接口上需要配置VIP地址,以便接收director转发过来的数据包,以及作为响应的报文源IP
3. Director转发给RealServer时需要借助隧道,隧道外层的IP头部的源IP是DIP,目标IP是RIP,而RealServer响应给客户端的IP头部是根据隧道内层的IP头分析得到的,源IP是VIP,目标IP是CIP
4. 请求报文要经由Director,但响应不经由Director,响应由RealServer自己完成
5. 不支持端口映射
6. RS的OS须支持隧道功能

一般来说,TUN模式常会用来负载调度缓存服务器组,这些缓存服务器一般放置在不同的网络环境,可以就近折返给客户端。在请求对象不在Cache服务器本地命中的情况下,Cache服务器要向源服务器发送请求,将结果取回,最后将结果返回给用户。

应用场景:
LAN环境一般多采用DR模式,WAN环境虽然可以用TUN模式,但是一般在WAN环境下,请求转发更多的被haproxy/nginx/DNS等实现。因此,TUN模式实际应用的很少,跨机房的应用一般专线光纤连接或DNS调度
  • lvs-fullnat:修改请求报文的源和目标IP,默认内核不支持

29-LVS负载调度器

通过同时修改请求报文的源IP地址和目标IP地址进行转发
CIP --> DIP
VIP --> RIP
fullnat模式特点:
1. VIP是公网地址,RIP和DIP是私网地址,且通常不在同一IP网络;因此,RIP的网关一般不会指向DIP
2. RS收到的请求报文源地址是DIP,因此,只需响应给DIP;但Director还要将其发往Client
3. 请求和响应报文都经由Director
4. 相对NAT模式,可以更好的实现LVS-RealServer间跨VLAN通讯
5. 支持端口映射
注意:此类型kernel默认不支持

LVS工作模式总结和比较


NAT

TUN

DR

Real Server

any

Tunneling

Non-arp device

Real server network

private

LAN/WAN

LAN

Real server number

low (10~20)

High (100)

High (100)

Real server gateway

load balancer

own router

Own router

优点

端口转换

WAN

性能最好

缺点

性能瓶颈

要求支持隧道,不支持端口转换

不支持跨网段和端口转换

lvs-nat与lvs-fullnat:
1. 请求和响应报文都经由Director
2. lvs-nat:RIP的网关要指向DIP
3. lvs-fullnat:RIP和DIP未必在同一IP网络,但要能通信

lvs-dr与lvs-tun:
1. 请求报文要经由Director,但响应报文由RS直接发往Client
2. lvs-dr:通过封装新的MAC首部实现,通过MAC网络转发
3. lvs-tun:通过在原IP报文外封装新IP头实现转发,支持远距离通信

LVS 调度算法

ipvs scheduler:根据其调度时是否考虑各RS当前的负载状态,分为两种:静态方法和动态方法

#静态方法-仅根据算法本身进行调度
1. RR:roundrobin,轮询,较常用,雨露均沾
2. WRR:Weighted RR,加权轮询,较常用
3. SH:Source Hashing,实现session sticky,源IP地址hash;将来自于同一个IP地址的请求始终发往第一次挑中的RS,从而实现会话绑定
4. DH:Destination Hashing;目标地址哈希,第一次轮询调度至RS,后续将发往同一个目标地址的请求始终转发至第一次挑中的RS,典型使用场景是正向代理缓存场景中的负载均衡,如: Web缓存
5. FO:Weighted Fail Over,遍历虚拟服务所关联的真实服务器链表,找到还未过载(未设置IP_VS_DEST_F_OVERLOAD标志)的且权重最高的真实服务器,进行调度

#动态方法-主要根据每RS当前的负载状态及调度算法进行调度Overhead=value 较小的RS将被调度
1. LC:least connections 适用于长连接应用 --> Overhead=activeconns*256+inactiveconns
2. WLC:Weighted LC,默认调度方法,较常用 --> Overhead=(activeconns*256+inactiveconns)/weight
3. SED:Shortest Expection Delay,初始连接高权重优先,只检查活动连接,而不考虑非活动连接
--> Overhead=(activeconns+1)*256/weight
4. NQ:Never Queue,第一轮均匀分配,后续SED
5. LBLC:Locality-Based LC,动态的DH算法,使用场景:根据负载状态实现正向代理,实现Web Cache等
6. LBLCR:LBLC with Replication,带复制功能的LBLC,解决LBLC负载不均衡问题,从负载重的复制到负载轻的RS,实现Web Cache等
7. OVF:Overflow-connection,基于真实服务器的活动连接数量和权重值实现。将新连接调度到权重值最高的真实服务器,直到其活动连接数量超过权重值,之后调度到下一个权重值最高的真实服务器,在此OVF算法中,遍历虚拟服务相关联的真实服务器链表,找到权重值最高的可用真实服务器。

*一个可用的真实服务器需要同时满足以下条件:
>未过载(未设置IP_VS_DEST_F_OVERLOAD标志)
>真实服务器当前的活动连接数量小于其权重值
>其权重值不为零

LVS 相关软件

#程序包:ipvsadm
Unit File: ipvsadm.service
主程序:/usr/sbin/ipvsadm
规则保存工具:/usr/sbin/ipvsadm-save
规则重载工具:/usr/sbin/ipvsadm-restore
配置文件:/etc/sysconfig/ipvsadm-config
ipvs调度规则文件:/etc/sysconfig/ipvsadm

#命令
#管理集群服务
ipvsadm -A|E -t|u|f service-address [-s scheduler] [-p [timeout]] [-M netmask]
[--pe persistence_engine] [-b sched-flags]
ipvsadm -D -t|u|f service-address #删除
ipvsadm –C #清空
ipvsadm –R #重载,相当于ipvsadm-restore
ipvsadm -S [-n] #保存,相当于ipvsadm-save

增、修改:
ipvsadm -A|E -t|u|f service-address [-s scheduler] [-p [timeout]]
删除:
ipvsadm -D -t|u|f service-address
vip附加
service-address:
-t|u|f:
-t: TCP协议的端口,VIP:TCP_PORT 如: -t 10.0.0.100:80
-u: UDP协议的端口,VIP:UDP_PORT
-f:firewall MARK,标记,一个数字
[-s scheduler]:指定集群的调度算法,默认为wlc

#管理集群中的RS
ipvsadm -a|e -t|u|f service-address -r server-address [-g|i|m] [-w weight]
ipvsadm -d -t|u|f service-address -r server-address
ipvsadm -L|l [options]
ipvsadm -Z [-t|u|f service-address]
管理集群上的RS:增、改
ipvsadm -a|e -t|u|f service-address -r server-address [-g|i|m] [-w weight]

ipvsadm -d -t|u|f service-address -r server-address
rs附加
server-address:
rip[:port] 如省略port,不作端口映射
选项:
lvs类型:
-g: gateway, dr类型,默认
-i: ipip, tun类型
-m: masquerade, nat类型
-w weight:权重

#清空定义的所有内容:
ipvsadm -C

#清空计数器:
ipvsadm -Z [-t|u|f service-address]

#查看:
ipvsadm -L|l [options]
--numeric, -n:以数字形式输出地址和端口号
--exact:扩展信息,精确值
--connection,-c:当前IPVS连接输出
--stats:统计信息
--rate :输出速率信息

#ipvs规则:
/proc/net/ip_vs

#ipvs连接:
/proc/net/ip_vs_conn

#保存:
ipvsadm-save > /PATH/TO/IPVSADM_FILE
systemctl stop ipvsadm.service #会自动保存规则至/etc/sysconfig/ipvsadm

#重载:
ipvsadm-restore < /PATH/FROM/IPVSADM_FILE
systemctl start ipvsadm.service #会自动加载/etc/sysconfig/ipvsadm中规则

防火墙标记

FWM:FireWall Mark
MARK target 可用于给特定的报文打标记 --set-mark value
借助于防火墙标记来分类报文,而后基于标记定义集群服务;可将多个不同的应用使用同一个集群服务进行调度

#实现方法:
在Director主机打标记:
iptables -t mangle -A PREROUTING -d $vip -p $proto -m multiport --dports $port1,$port2,… -j MARK --set-mark NUMBER

在Director主机基于标记定义集群服务:
ipvsadm -A -f NUMBER [options]

#范例:
[root@lvs ~]#iptables -t mangle -A PREROUTING -d 172.16.0.100 -p tcp -m
multiport --dports 80,443 -j MARK --set-mark 10
[root@lvs ~]#ipvsadm -C
[root@lvs ~]#ipvsadm -A -f 10 -s rr
[root@lvs ~]#ipvsadm -a -f 10 -r 10.0.0.7 -g
[root@lvs ~]#ipvsadm -a -f 10 -r 10.0.0.17 -g
[root@lvs ~]#ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 10 rr
-> 10.0.0.7:0 Route 1 0 0
-> 10.0.0.17:0 Route 1 0 0
[root@lvs ~]#cat /proc/net/ip_vs
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 0000000A rr
-> 0A000011:0000 Route 1 0 9
-> 0A000007:0000 Route 1 0 9

LVS 持久连接

持久连接( lvs persistence )模板:实现无论使用任何调度算法,在一段时间内(默认360s ),能够实现将来自同一个地址的请求始终发往同一个RS

ipvsadm -A|E -t|u|f service-address [-s scheduler] [-p [timeout]]

#持久连接实现方式:
每端口持久(PPC):每个端口定义为一个集群服务,每集群服务单独调度
每防火墙标记持久(PFWMC):基于防火墙标记定义集群服务;可实现将多个端口上的应用统一
调度,即所谓的port Affinity
每客户端持久(PCC):基于0端口(表示所有服务)定义集群服务,即将客户端对所有应用的请
求都调度至后端主机,必须定义为持久模式
范例:
[root@lvs ~]#ipvsadm -E -f 10 -p
[root@lvs ~]#ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 10 wlc persistent 360
-> 10.0.0.7:0 Route 1 0 15
-> 10.0.0.17:0 Route 1 0 7
[root@lvs ~]#ipvsadm -E -f 10 -p 3600
[root@lvs ~]#ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 10 wlc persistent 3600
-> 10.0.0.7:0 Route 1 0 79
-> 10.0.0.17:0 Route 1 0 7
[root@lvs ~]#cat /proc/net/ip_vs_conn
Pro FromIP FPrt ToIP TPrt DestIP DPrt State Expires PEName PEData
TCP C0A80006 C816 AC100064 01BB 0A000011 01BB FIN_WAIT 67
TCP C0A80006 C812 AC100064 01BB 0A000011 01BB FIN_WAIT 67
TCP C0A80006 9A36 AC100064 0050 0A000011 0050 FIN_WAIT 65
TCP C0A80006 C806 AC100064 01BB 0A000011 01BB FIN_WAIT 65
TCP C0A80006 9A3E AC100064 0050 0A000011 0050 FIN_WAIT 66
TCP C0A80006 C81A AC100064 01BB 0A000011 01BB FIN_WAIT 67
TCP C0A80006 C80A AC100064 01BB 0A000011 01BB FIN_WAIT 66
TCP C0A80006 9A3A AC100064 0050 0A000011 0050 FIN_WAIT 66
TCP C0A80006 9A4E AC100064 0050 0A000011 0050 FIN_WAIT 68
TCP C0A80006 9A42 AC100064 0050 0A000011 0050 FIN_WAIT 67
TCP C0A80006 9A46 AC100064 0050 0A000011 0050 FIN_WAIT 67
TCP C0A80006 C81E AC100064 01BB 0A000011 01BB FIN_WAIT 68
IP C0A80006 0000 0000000A 0000 0A000011 0000 NONE 948
TCP C0A80006 C80E AC100064 01BB 0A000011 01BB FIN_WAIT 66
TCP C0A80006 9A4A AC100064 0050 0A000011 0050 FIN_WAIT 67