CNN的实现与可视化

时间:2022-11-05 10:55:20

CNN的实现

我们已经实现了卷积层和池化层,现在来组合这些层,搭建进行手写数字识别的CNN。如下图所示,网络的构成是“Convolution - ReLU - Pooling -Affine - ReLU - Affine - Softmax”,我们将它实现为名为SimpleConvNet的类。

CNN的实现与可视化

SimpleConvNet
# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient


class SimpleConvNet:
    """简单的ConvNet

    conv - relu - pool - affine - relu - affine - softmax
    
    Parameters
    ----------
    input_size : 输入大小(MNIST的情况下为784hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100]output_size : 输出大小(MNIST的情况下为10activation : 'relu' or 'sigmoid'
    weight_init_std : 指定权重的标准差(e.g. 0.01)
        指定'relu''he'的情况下设定“He的初始值”
        指定'sigmoid''xavier'的情况下设定“Xavier的初始值”
    """
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        """
        :param input_dim:输入数据的维度:(通道,高,长)
        :param conv_param:卷积层的超参数(字典)。字典的关键字如下:
                filter_num―滤波器的数量
                filter_size―滤波器的大小
                stride―步幅
                pad―填充
        :param hidden_size:隐藏层(全连接)的神经元数量
        :param output_size:输出层(全连接)的神经元数量
        :param weight_init_std:初始化时权重的标准差
        """
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 初始化权重
        self.params = {'W1': weight_init_std * np.random.randn(filter_num, input_dim[0], filter_size, filter_size),
                       'b1': np.zeros(filter_num),
                       'W2': weight_init_std * np.random.randn(pool_output_size, hidden_size),
                       'b2': np.zeros(hidden_size),
                       'W3': weight_init_std * np.random.randn(hidden_size, output_size),
                       'b3': np.zeros(output_size)}

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']...是各层的权重
            grads['b1']、grads['b2']...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']...是各层的权重
            grads['b1']、grads['b2']...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {'W1': self.layers['Conv1'].dW,
                 'b1': self.layers['Conv1'].db,
                 'W2': self.layers['Affine1'].dW,
                 'b2': self.layers['Affine1'].db,
                 'W3': self.layers['Affine2'].dW,
                 'b3': self.layers['Affine2'].db}

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

现在,使用这个SimpleConvNet学习MNIST数据集。如果使用MNIST数据集训练SimpleConvNet,则训练数据的识别率为99.82%,测试数据的识别率为98.96%(每次学习的识别精度都会发生一些误差)。测试数据的识别率大约为99%,就小型网络来说,这是一个非常高的识别率。

CNN的实现与可视化
CNN的实现与可视化

学习MNIST数据集
# coding: utf-8
import sys, os

sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from common.trainer import Trainer

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据 
# x_train, t_train = x_train[:5000], t_train[:5000]
# x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20

network = SimpleConvNet(input_dim=(1, 28, 28),
                        conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("params.pkl")
print("Saved Network Parameters!")

# 绘制图形
markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

CNN的可视化

第1层权重的可视化

刚才我们对MNIST数据集进行了简单的CNN学习。当时,第1层的卷积层的权重的形状是(30, 1, 5, 5),即30个大小为5 × 5、通道为1的滤波器。滤波器大小是5 × 5、通道数是1,意味着滤波器可以可视化为1通道的灰度图像。现在,我们将卷积层(第1层)的滤波器显示为图像。这里,我们来比较一下学习前和学习后的权重。

学习前:

CNN的实现与可视化

学习后:

CNN的实现与可视化

# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from simple_convnet import SimpleConvNet


def filter_show(filters, nx=8, margin=3, scale=10):
    """
    c.f. https://gist.github.com/aidiary/07d530d5e08011832b12#file-draw_weight-py
    """
    FN, C, FH, FW = filters.shape
    ny = int(np.ceil(FN / nx))

    fig = plt.figure()
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

    for i in range(FN):
        ax = fig.add_subplot(ny, nx, i + 1, xticks=[], yticks=[])
        ax.imshow(filters[i, 0], cmap=plt.cm.gray_r, interpolation='nearest')
    plt.show()


network = SimpleConvNet()
# 随机进行初始化后的权重
filter_show(network.params['W1'])

# 学习后的权重
network.load_params("params.pkl")
filter_show(network.params['W1'])

学习前的滤波器是随机进行初始化的,所以在黑白的浓淡上没有规律可循,但学习后的滤波器变成了有规律的图像。我们发现,通过学习,滤波器被更新成了有规律的滤波器,比如从白到黑渐变的滤波器、含有块状区域(称为blob)的滤波器等。

如果要问有规律的滤波器在“观察”什么,答案就是它在观察边缘(颜色变化的分界线)和斑块(局部的块状区域)等。比如,左半部分为白色、右半部分为黑色的滤波器的情况下,会对垂直方向上的边缘有响应。输出图像1中,垂直方向的边缘上出现白色像素,输出图像2中,水平方向的边缘上出现很多白色像素。由此可知,卷积层的滤波器会提取边缘或斑块等原始信息。而刚才实现的CNN会将这些原始信息传递给后面的层。

CNN的实现与可视化

基于分层结构的信息提取

上面的结果是针对第1层的卷积层得出的。第1层的卷积层中提取了边缘或斑块等“低级”信息,那么在堆叠了多层的CNN中,各层中又会提取什么样的信息呢?根据深度学习的可视化相关的研究,随着层次加深,提取的信息(正确地讲,是反映强烈的神经元)也越来越抽象。下图中展示了进行一般物体识别(车或狗等)的8层CNN。这个网络结构的名称是AlexNet。AlexNet网络结构堆叠了多层卷积层和池化层,最后经过全连接层输出结果。图中的方块表示的是中间数据,对于这些中间数据,会连续应用卷积运算。

CNN的实现与可视化

第1层的神经元对边缘或斑块有响应,第3层对纹理有响应,第5层对物体部件有响应,最后的全连接层对物体的类别(狗或车)有响应。如果堆叠了多层卷积层,则随着层次加深,提取的信息也愈加复杂、抽象,这是深度学习中很有意思的一个地方。最开始的层对简单的边缘有响应,接下来的层对纹理有响应,再后面的层对更加复杂的物体部件有响应。也就是说,随着层次加深,神经元从简单的形状向“高级”信息变化。换句话说,就像我们理解东西的“含义”一样,响应的对象在逐渐变化。

具有代表性的 CNN

LeNet

LeNet在1998年被提出,是进行手写数字识别的网络。如下图所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

CNN的实现与可视化

和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

综上,LeNet与现在的CNN虽然有些许不同,但差别并不是那么大。想到LeNet是20多年前提出的最早的CNN,还是很令人称奇的。

AlexNet

在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如下图所示。

CNN的实现与可视化

AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。激活函数使用ReLU;使用进行局部正规化的LRN(Local Response Normalization)层;使用Dropout。

如上所述,关于网络结构,LeNet和AlexNet没有太大的不同。但是,围绕它们的环境和计算机技术有了很大的进步。具体地说,现在任何人都可以获得大量的数据。而且,擅长大规模并行计算的GPU得到普及,高速进行大量的运算已经成为可能。大数据和GPU已成为深度学习发展的巨大的原动力。