用scala的actor并发编程写一个单机版的WorldCount

时间:2022-03-04 16:16:38

前言:最近一段时间比较忙,也是比较懒了吧,好长时间没写博客了,新的一年到来,给自己一个小目标,博客坚持写下去,分享一下这历程!废话不多说,开始正题咯(希望大家喜欢!)

首先这算是一个scala程序的入门程序,但是并不是针对零基础的,需要了解一定的scala基础,如果有Java基础的同学看起来估计会好一点。如果有必要的话,后面补一篇比较 详细的适合新手的零基础scala“教程”吧!

首先说明一下,Scala Actor是scala 2.10.x版本及以前版本的Actor。Scala在2.11.x版本中将Akka加入其中,作为其默认的Actor,老版本的Actor已经废弃,虽然已经废弃了,但是还是可以作为扩展去了解一下的。

这里普及一下java并发编程与Scala Actor编程的区别:

用scala的actor并发编程写一个单机版的WorldCount

  对于Java,我们都知道它的多线程实现需要对共享资源(变量、对象等)使用synchronized 关键字进行代码块同步、对象锁互斥等等。而且,常常一大块的try…catch语句块中加上wait方法、notify方法、notifyAll方法是让人很头疼的。原因就在于Java中多数使用的是可变状态的对象资源,对这些资源进行共享来实现多线程编程的话,控制好资源竞争与防止对象状态被意外修改是非常重要的,而对象状态的不变性也是较难以保证的。

  与Java的基于共享数据和锁的线程模型不同,scala的actor包则提供了另外一种不共享任何数据、依赖消息传递的模型,从而进行并发编程。

Actor的执行顺序

1、首先调用start()方法启动Actor

2、调用start()方法后其act()方法会被执行

3、向Actor发送消息

4、act方法执行完成之后,程序会调用exit方法

发送消息的方式

!

发送异步消息,没有返回值。

!?

发送同步消息,等待返回值。

!!

发送异步消息,返回值是 Future[Any]。

注意:Future 表示一个异步操作的结果状态,可能还没有实际完成的异步任务的结果

Any  是所有类的超类,Future[Any]的泛型是异步操作结果的类型。

正式进入正题,对!前面还是做了一些基本的介绍,方便大家的回忆!

我们的目标:用actor并发编程写一个单机版的WorldCount,将多个文件作为输入,计算完成后将多个任务汇总,得到最终的结果

大致思想步骤:

1、通过loop +react 方式去不断的接受消息(注意这里的消息就是我们当前的文件名称)

2、利用case class样例类去匹配对应的操作

3、其中scala中提供了文件读取的接口Source,通过 调用其fromFile方法去获取文件内容

4、将每个文件的单词数量进行局部汇总,存放在一个ListBuffer中

5、最后将ListBuffer中的结果进行全局汇总。

准备工作:在E盘放入三个文件,aa.txt、bb.txt、cc.txt随便写一些单词进去。

用scala的actor并发编程写一个单机版的WorldCount用scala的actor并发编程写一个单机版的WorldCount用scala的actor并发编程写一个单机版的WorldCount用scala的actor并发编程写一个单机版的WorldCount

接下来就是写一个我们的WordCountScala.scala类了:

 package com.yida.scala

 import scala.actors.{Actor, Future}
import scala.collection.mutable
import scala.collection.mutable.ListBuffer
import scala.io.Source //todo:利用scala中的并发编程,多个文件作为输入,首先进行局部汇总,最终再进行全部汇总 //todo:定义样例类
case class SubmitTask(fileName:String)//提交任务的样例类
case class ResultTask(result:Map[String,Int])//todo:封装每个单词出现的次数 class WordCountScala extends Actor{
override def act(): Unit = {
loop{
react{
case SubmitTask(fileName) => {
//todo:2、读取文件数据,利用scala中的scala.io.Source的fromFile方法读取数据
val lines: String = Source.fromFile(fileName).mkString
//todo:3、按照换行符进行读取,window下的换行符是 \r\n Linux是 \n
val linesArray: Array[String] = lines.split("\r\n")
println(linesArray.toBuffer)
//todo:4、按照空格进行切分并且压平
val words: Array[String] = linesArray.flatMap(_.split(" "))
println(words.toBuffer)
//todo:5、每个单词记为1
//words.map((_,1))
val wordAndOne: Array[(String, Int)] = words.map(x=>(x,))
println(wordAndOne.toBuffer)
//todo:6、按照单词进行分组
val wordGroup: Map[String, Array[(String, Int)]] = wordAndOne.groupBy(_._1)
println(wordGroup.toBuffer)
//todo:7、通过mapValues方法拿到map所有key对应的value
val result: Map[String, Int] = wordGroup.mapValues(_.length)
println(result.toBuffer)
//todo:8、把结果返回给发送方
sender ! ResultTask(result)
}
}
}
}
} object WordCountScala{
def main(args: Array[String]): Unit = {
//todo:定义一个set集合 ,用于存放每次异步的结果
val hashSet = new mutable.HashSet[Future[Any]]()
//todo:定义一个list集合,用于存放真正的结果数据
val taskList = new ListBuffer[ResultTask]
/*
val task = new WordCountScala
task.start()
task !! SubmitTask("E:\\aa.txt")*/ //todo:1、准备数据文件
val files = Array("E:\\aa.txt","E:\\bb.txt","E:\\cc.txt")
//todo:2、遍历数据文件,发送消息
for(fileName <- files){
//todo:3、针对每一个文件,创建一个actor实例
val task = new WordCountScala
task.start()
//向actor提交任务
val result: Future[Any] = task !! SubmitTask(fileName)
//todo:4、存放异步返回结果到set集合中
hashSet += result
}
//todo:5、处理hashSet中的数据
while(hashSet.size>){
//todo:6、判断对应真正完成任务的结果
val completedTask: mutable.HashSet[Future[Any]] = hashSet.filter(_.isSet)
for(c <- completedTask){
//todo:7、获取future中的数据
val data: Any = c.apply()
val task: ResultTask = data.asInstanceOf[ResultTask]
//todo:8、将真正的结果保存到list集合中
taskList += task
//todo:9、将处理完成的数据删除
hashSet -= c
}
}
//todo:10、对taskList结果进行操作
println(taskList.map(_.result).flatten.groupBy(_._1).mapValues(x=>x.foldLeft()(_+_._2))) }
}

欣赏一下跑完后的结果:代码 注释还有 不懂的地方 欢迎提出来,我看到了会解答的哈!

用scala的actor并发编程写一个单机版的WorldCount