【高等数学基础进阶】常微分方程-补充 & 多元函数微分学-补充

时间:2022-10-24 13:58:37

一阶微分方程

 

一阶微分方程一般有五种解法:可分离变量的方程;齐次微分方程;一阶线性微分方程;伯努利方程;全微分方程

如果给定的一阶微分方程不属于上述五种标注形式,首先考虑将$x,y$对调,即认定$x$为$y$的函数,再判断新方程的类型;或者利用简单的变量代换将其化为上述五种类型之一而求解

 

微分方程求解

例8:微分方程$ydx+(x-3y^{2})dy=0$满足条件$y \Big|_{x=1}^{}=1$的解为$y=()$

 

这里用偏积分的方式求解

 

设$y=f(x)$,即有$g(x,y)=0$,依据题意,由于

$$

\frac{\partial y}{\partial y}=1,\frac{\partial z-3y^{2}}{\partial x}=1

$$

因此可以用偏积分的方式

$$

\begin{aligned}

dg(x,y)&=ydx\

\int\limits_{}dg(x,y)&=\int\limits_{}ydx\

g(x,y)&=xy+\phi(y)\

&代入另一个\

\frac{\partial g(x,y)}{\partial y}&=x+\phi'(y)=x-3y^{2}\

\phi'(y)&=-3y^{2}\

\phi(y)&=-y^{3}

\end{aligned}

$$

因此可得

$$

g(x,y)=xy-y^{3}=0

$$

$$

y=0或y=\sqrt{x}

$$

又因为$\begin{aligned} y \Big|_{x=1}^{}=1\end{aligned}$,因此$y=\sqrt{x}$

 

高阶偏导数

定理:如果函数$z=f(x,y)$的两个混合偏导数在区域$D$/某点内连续,则在该区域内/该点

$$

\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}

$$

 

对于二元以上的函数,也可以类似地定义二阶或者更高阶偏导数,且二阶与高阶混合偏导数连续时,混合偏导数的值与求导次序无关

 

全微分

定义:如果函数$z=f(x,y)$在点$(x_{0},y_{0})$处的全增量

$$

\Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0})

$$

可表示为

$$

\Delta z=A \Delta x+B \Delta y+o(\rho)

$$

其中$A,B$与$\Delta x,\Delta y$无关,$\rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$,则称函数$z=f(x,y)$在点$(x_{0},y_{0})$处可微,而$A \Delta x+B \Delta y$称为函数$z=f(x,y)$在点$(x_{0},y_{0})$处的全微分,记为

$$

dz=A \Delta x+B \Delta y

$$

如果$f(x,y)$在区域$D$内的每一点$(x,y)$都可微分,则称$f(x,y)$在$D$内可微分

 

偏导数计算

先带后求明显比定义法更方便,因为带完后原本二元函数变为一元函数,一元函数看导数是否存在是方便的

 

可导与可微

$\begin{aligned} f(x,y)=\left{\begin{aligned}& \frac{xy}{\sqrt{x^{2}+y^{2}}}&(x,y)\ne (0,0)\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned}$在$(0,0)$点可导,但不可微

 

$$

\begin{aligned}

f_{x}(0,0)&=\lim\limits_{\Delta x \to 0}\frac{\Delta x \cdot 0}{\sqrt{(\Delta x)^{2}}}=1\

f_{y}(0,0)&=1

\end{aligned}

$$

显然可导

$$

\begin{aligned}

&\lim\limits_{\substack{\Delta x \to 0\ \Delta y\to 0}}\frac{\frac{\Delta x \Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}-0-(1\cdot \Delta x+1\cdot \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\

=&\lim\limits_{\substack{\Delta x \to 0\ \Delta y\to 0}}\frac{\Delta x \Delta y-(\Delta x+\Delta y)\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{(\Delta x)^{2}+(\Delta y)^{2}}\

=&\lim\limits_{\substack{\Delta x\to 0\ \Delta y=k \Delta x}}\frac{[k-(k+1)\sqrt{k^{2}+1}]  (\Delta x)^{2}}{(k^{2}+1)(\Delta x)^{2}}\ne 0

\end{aligned}

$$

显然不可微

 

全微分形式的不变性

设函数$z=f(u,v),u=u(x,y),v=v(x,y)$都有连续的一阶偏导数,则复合函数$z=f[u(x,y),v(x,y)]$的全微分

$$

\begin{aligned}

dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}y=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv

\end{aligned}

$$

 

即,不论把函数$z$看做自变量$x,y$的函数,还是看做中间变量$u,v$的函数,函数$z$的全微分形式都是一样的

 

隐函数微分法

 

由方程组

$$

\left{\begin{aligned}&F_{1}(x,y,u,v)=0\&F_{2}(x,y,u,v)=0\end{aligned}\right.

$$

确定的隐函数$u=u(x,y),v=(x,y)$

若要求$\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}\end{aligned}$,可以将每个方程分别对$x$求偏导数,得出以$\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned}$为变量的方程组,可解得$\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned}$。同样,将每个方程分别对$y$求偏导数,可以得出以$\begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned}$为变量的方程组,解之可得$\begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned}$

 

隐函数的偏导

 

如果实在不会用定理2判断隐函数的自变量和因变量,可以根据题目提问看谁是因变量,例如下题,显然是$u$,谁是自变量,例如下题,显然是$x,y$

 

例6:已知$u+e^{u}=xy$,求$\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^{2} u}{\partial x \partial y}\end{aligned}$