1Introduction
由于项目需求,开始介入APA自动泊车辅助系统学习,网上找了些资料,Github搜到了相关泊车仿真代码,链接如下https://github.com/duzehua/Automatic-parking-path-planning.git,
然后有搜到了一篇论文链接在https://wenku.baidu.com/view/3839b9a12b4ac850ad02de80d4d8d15abe2300ae.html
2.Algorithm
我们主要到,此规划直接用两个相切的圆弧进行规划,也会有用三段进行规划,如下图:
3.Implement
本次的MATLAB代码时基于两段圆弧,没有中间的直线段的规划。
主要源代码如下,完整代码去Github代码库:
```bash
% 参数设定
up_limit = 6;%上边界纵坐标
front_p = [5, 2]; % 车位信息C点, 参见说明文档最后碰撞检测第二部分
right_limit = 11; % 横坐标右边界
o_3 = [0.5, 1]; % 泊车点
ini = [6, 4]; % 初始点
c_l = 3; % 车长
c_w = 1.4; % 车宽
r_min = 2; % 最小转弯半径
plot_vec = 0.01; % 动画速度, 数越小, 越快, 为0直接出图
fit_model = 0; % 拟合形式, 1位高次多项式, 其他数为傅里叶级数拟合, 图中最后出现的红色曲线为拟合曲线
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1)
hold on
grid on
%% 泊车区域限定
% 左下角坐标, 沿x长度, 沿y长度
line([0, right_limit], [up_limit, up_limit] ,'LineWidth',2, 'Color',[0 0 0]);
line([0, front_p(1)], [0, 0] ,'LineWidth',2, 'Color',[0 0 0]);
line([front_p(1), front_p(1)], [0, front_p(2)] ,'LineWidth',2, 'Color',[0 0 0]);
line([front_p(1), right_limit], [front_p(2), front_p(2)],'LineWidth',2, 'Color',[0 0 0]);
axis([0 right_limit 0 up_limit], 'equal');
%% 参数
x = ini(1); y = ini(2); % 车辆后轴中心点坐标
c_o = [x, y];
%%自车区域大小
c_line(1,:) = [x, x, y - c_w/2, y + c_w/2];
c_line(2,:) = [x, x + c_l, y + c_w/2, y + c_w/2];
c_line(3,:) = [x + c_l, x + c_l, y + c_w/2, y - c_w/2];
c_line(4,:) = [x + c_l, x, y - c_w/2, y - c_w/2];
for i = 1:4
car(i) = line([c_line(i,1),c_line(i,2)], [c_line(i,3), c_line(i,4)],'LineWidth',1.5, 'Color',[0 0 0]);
end
%% 弧长确定
% 倒推法, 根据最小转弯半径确定弧2的圆心
cir2 = [o_3(1), o_3(2) + r_min];
% plot(cir2(1), cir2(2), 'ro');
% 根据过初始点和泊车点的圆的圆心确定最大半径
k_1 = (c_o(2) - o_3(2)) / (c_o(1) - o_3(1));
k_2 = - 1/k_1;
r_max = y - (k_2 * x + ((c_o(2) + o_3(2))/2 - k_2*(c_o(1) + o_3(1))/2)); % 第一次转弯最大半径
% 弧1, 根据最大最小转弯半径确定的圆心
p_rmin = [x, y - r_min];
p_rmax = [x, y - r_max];
% 最小转弯半径对应的到圆心2-r_min的距离和到初始点的距离, 以及所对应的转角
v_min = p_rmin - cir2;
l_min = norm(v_min) - r_min; % 最小转弯半径时, 与o_3连线得到的半径对比
d_min = y - p_rmin(2);
alpha_min = pi/2 - atan2(abs(v_min(2)), abs(v_min(1)));
% alpha_min*180/pi
% 最大转弯半径对应的到圆心2-r_min的距离和到初始点的距离, 以及所对应的转角
v_max = p_rmax - cir2;
l_max = norm(v_max) - r_min;
d_max = y - p_rmax(2);
alpha_max = pi/2 - atan2(abs(v_max(2)), abs(v_max(1)));
% alpha_max*180/pi
% 2分法找满足相切的两个弧的, 弧1的半径和圆心
l_middle = inf;
d_middle = 0;
% 由于弧1以最小转弯半径对应圆心构成的到初始点的长一般小于到圆心2的点, 同理, 另一个相反. 以此判断条件, 是否满足泊车最低要求.
if (l_min > d_min) && (l_max < d_max)
while abs(l_middle - d_middle) > 0.000001
% 根据中间角度对应的射线与x = x交点作为圆心, 计算l和d
alpha_middle = (alpha_max + alpha_min)/2;
k_middle = -tan(pi/2 - alpha_middle);
y_middle = k_middle*c_o(1) + (cir2(2) - k_middle*cir2(1));
d_middle = y - y_middle;
v_middle = [x, y_middle] - cir2;
l_middle = norm(v_middle) - r_min;
if l_middle > d_middle
v_min = [x, y_middle] - cir2;
l_min = norm(v_min) - r_min; % 最小转弯半径时, 与o_3连线得到的半径对比
d_min = y - y_middle;
alpha_min = pi/2 - atan2(abs(v_min(2)), abs(v_min(1)));
else
v_max = [x, y_middle] - cir2;
l_max = norm(v_max) - r_min;
d_max = y - y_middle;
alpha_max = pi/2 - atan2(abs(v_max(2)), abs(v_max(1)));
end
end
% plot(x, y_middle, 'ro')
d_middle = d_max;
alpha = alpha_max;
else
disp('路径规划失败, 弧1半径超过最大转弯半径(或小于最小转弯半径)!');
return
end
碰撞检测:
% 构造序列
alpha_arr = linspace(0, alpha, 50);
alpha_arr = alpha_arr';
cir1_data = [x - d_middle.*sin(alpha_arr), y_middle + d_middle.*cos(alpha_arr), alpha_arr];
alpha_arr = linspace(alpha, 0, 50);
alpha_arr = alpha_arr';
cir2_data = [cir2_o(1) + r_min.*sin(alpha_arr), cir2_o(2) - r_min.*cos(alpha_arr), alpha_arr];
cir_data = [cir1_data; cir2_data];
% for i = 1:length(cir_data)
% plot(cir_data(i,1), cir_data(i,2),'r.');
% end
% return
%% 碰撞判断
% 弧1圆心cir1_o, 道路上边界up_limit
% 车左前到弧1圆心的距离
d_co1 = sqrt(c_l^2 + (c_w/2 + d_middle)^2);
theta_co1 = atan2((c_w/2 + d_middle), c_l);
if theta_co1 < alpha
if up_limit - cir1_o(2) < d_co1
disp('车左前头碰上边界, 路径规划失败, 请尝试将起始点向下移动, 或减小最小转弯半径!');
return;
end
else
if up_limit - cir1_o(2) < d_co1*cos(theta_co1 - alpha)
disp('车左前头碰上边界, 路径规划失败, 请尝试将起始点向下移动, 或减小最小转弯半径!');
return;
end
end
% 弧2圆心cir2_o, 车位前边界front_limit
% 车右前到弧2圆心的距离
d_co2 = sqrt(c_l^2 + (c_w/2 + r_min)^2);
theta_co2 = atan2((c_w/2 + r_min), c_l);
if theta_co2 + alpha >= pi/2
if front_p(1) - cir2_o(1) < d_co2*sin(pi/2 - atan2(abs(front_p(2) - cir2(2)), abs(front_p(1) - cir2(1))))
disp('车右前头碰前边界, 路径规划失败, 请尝试减小最小转弯半径, 或将泊车点向左移动!');
return;
end
else
if front_p(1) - cir2_o(1) < d_co2*sin(theta_co2 + alpha)
disp('车右前头碰前边界, 路径规划失败, 请尝试减小最小转弯半径, 或将泊车点向左移动!');
return;
end
end
碰撞检测主要分为如下两种情况:
情况一:
对应代码片段
情况二:
对应代码片段:
4.Question
对于此代码,基本看懂了,但是也有部分感觉不是十分懂得,
疑问一:
公式8求解最大转弯的最大半径,公式是如何推导出来的?暂时没懂,
疑问二:
迭代求解弧1的半径和圆心在代码里的实现----合理吗?
此处对应的代码:
5.Future
后续会着手上章提的两个问题,并且会使用MATLAB写圆弧-直线-圆弧的算法,按照如下的论文实现:
暂时先这样,还没吃午饭呢。
2022-10-16 13:44:00