Spark常规性能调优(二)

时间:2022-10-17 14:03:14

2、常规性能调优二:RDD优化

1)RDD复用

在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示

Spark常规性能调优(二)

对上图中的RDD计算架构进行修改,得到下图所示的优化结果

Spark常规性能调优(二)

2)RDD持久化

在Spark中,当多次对同一个RDD执行算子操作时,每一次都会对这个RDD以之前的父RDD重新计算一次,这种情况是必须要避免的,对同一个RDD的重复计算是对资源的极大浪费,因此,必须对多次使用的RDD进行持久化 ,通过持久化将公共RDD的数据缓存到内存/磁盘中,之后对于公共RDD的计算都会从内存/磁盘中直接获取RDD数据

对于RDD的持久化,有两点需要说明:

第一,RDD的持久化是可以进行序列化 的,当内存无法将RDD的数据完整的进行存放的时候,可以考虑使用序列化的方式减小数据体积,将数据完整存储在内存中

第二,如果对于数据的可靠性要求很高,并且内存充足,可以使用副本机制 ,对RDD数据进行持久化。当持久化启用了复本机制时,对于持久化的每个数据单元都存储一个副本,放在其他节点上面,由此实现数据的容错,一旦一个副本数据丢失,不需要重新计算,还可以使用另外一个副本

3)RDD尽可能早的filter操作

获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率

3、常规性能调优三:并行度调节

Spark作业中的并行度指各个stage的task的数量

如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费

理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度

Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率

Spark作业并行度的设置如下方代码清单所示

val conf = new SparkConf().set("spark.default.parallelism", "500")

4、常规性能调优四:广播大变量

默认情况下,task中的算子中如果使用了外部的变量,每个task都会获取一份变量的复本,这就造成了内存的极大消耗。一方面,如果后续对RDD进行持久化,可能就无法将RDD数据存入内存,只能写入磁盘,磁盘IO将会严重消耗性能;另一方面,task在创建对象的时候,也许会发现堆内存无法存放新创建的对象,这就会导致频繁的GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。

假设当前任务配置了20个Executor,指定500个task,有一个20M的变量被所有task共用,此时会在500个task中产生500个副本,耗费集群10G的内存,如果使用了广播变量, 那么每个Executor保存一个副本,一共消耗400M内存,内存消耗减少了5倍。

广播变量在每个Executor保存一个副本,此Executor的所有task共用此广播变量,这让变量产生的副本数量大大减少 。

在初始阶段,广播变量只在Driver中有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中尝试获取变量,如果本地没有,BlockManager就会从Driver或者其他节点的BlockManager上远程拉取变量的复本 ,并由本地的BlockManager进行管理;之后此Executor的所有task都会直接从本地的BlockManager中获取变量

5、常规性能调优五:Kryo序列化

默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。

Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了。

Kryo序列化注册方式的实例代码如下方代码清单所示

public class MyKryoRegistrator implements KryoRegistrator {  @Override  public void registerClasses(Kryo kryo)  {  kryo.register(StartupReportLogs.class);  } }

配置Kryo序列化方式的实例代码如下方代码清单所示

//创建SparkConf对象 val conf = new SparkConf().setMaster(…).setAppName(…) //使用Kryo序列化库,如果要使用Java序列化库,需要把该行屏蔽掉 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");  //在Kryo序列化库中注册自定义的类集合,如果要使用Java序列化库,需要把该行屏蔽掉 conf.set("spark.kryo.registrator", "atguigu.com.MyKryoRegistrator");

6、常规性能调优六:调节本地化等待时长

Spark作业运行过程中,Driver会对每一个stage的task进行分配。根据Spark的task分配算法,Spark希望task能够运行在它要计算的数据算在的节点 (数据本地化思想),这样就可以避免数据的网络传输。通常来说,task可能不会被分配到它处理的数据所在的节点,因为这些节点可用的资源可能已经用尽,此时,Spark会等待一段时间,默认3s,如果等待指定时间后仍然无法在指定节点运行,那么会自动降级,尝试将task分配到比较差的本地化级别所对应的节点上 ,比如将task分配到离它要计算的数据比较近的一个节点,然后进行计算,如果当前级别仍然不行,那么继续降级

当task要处理的数据不在task所在节点上时,会发生数据的传输。task会通过所在节点的BlockManager获取数据,BlockManager发现数据不在本地时,户通过网络传输组件从数据所在节点的BlockManager处获取数据

网络传输数据的情况是我们不愿意看到的,大量的网络传输会严重影响性能,因此,我们希望通过调节本地化等待时长,如果在等待时长这段时间内,目标节点处理完成了一部分task,那么当前的task将有机会得到执行,这样就能够改善Spark作业的整体性能

Spark的本地化等级如下表所示

名称

解析

PROCESS_LOCAL

进程本地化,task和数据在同一个Executor中,性能最好

NODE_LOCAL

节点本地化,task和数据在同一个节点中,但是task和数据不在同一个Executor中,数据需要在进程间进行传输

RACK_LOCAL

机架本地化,task和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输

NO_PREF

对于task来说,从哪里获取都一样,没有好坏之分

ANY

task和数据可以在集群的任何地方,而且不在一个机架中,性能最差

在Spark项目开发阶段,可以使用client模式对程序进行测试,此时,可以在本地看到比较全的日志信息,日志信息中有明确的task数据本地化的级别,如果大部分都是PROCESS_LOCAL,那么就无需进行调节,但是如果发现很多的级别都是NODE_LOCAL、ANY,那么需要对本地化的等待时长进行调节,通过延长本地化等待时长,看看task的本地化级别有没有提升,并观察Spark作业的运行时间有没有缩短

注意,过犹不及,不要将本地化等待时长延长地过长,导致因为大量的等待时长,使得Spark作业的运行时间反而增加了

Spark本地化等待时长的设置如下方代码清单所示

val conf = new SparkConf().set("spark.locality.wait", "6")