文章目录
一、矩阵类型
1、转置矩阵: A = ( 3 2 1 1 2 3 2 3 1 ) A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \\ \end{pmatrix} A=⎝ ⎛312223131⎠ ⎞ , A T = ( 3 1 2 2 2 3 1 3 1 ) A^T = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 2 & 3 \\ 1 & 3 & 1 \\ \end{pmatrix} AT=⎝ ⎛321123231⎠ ⎞, T T T 表示矩阵的转置
2、对角矩阵: ( 2 0 0 0 3 0 0 0 1 ) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} ⎝ ⎛200030001⎠ ⎞,对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为 d i a g ( a 1 , a 2 , a 3 , . . . , a n ) \mathrm{diag}(a_1,a_2,a_3,...,a_n) diag(a1,a2,a3,...,an)
3、上下三角矩阵: ( 1 2 3 0 2 3 0 0 1 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \\ \end{pmatrix} ⎝ ⎛100220331⎠ ⎞ , ( 1 0 0 3 2 0 2 3 1 ) \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 1 \\ \end{pmatrix} ⎝ ⎛132023001⎠ ⎞
4、单位矩阵: ( 1 0 0 0 1 0 0 0 1 ) = E = I \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} = E = I ⎝ ⎛100010001⎠ ⎞=E=I
5、正交矩阵:若 n n n 阶方阵 A A A,满足 A A T = E AA^T=E AAT=E,称 A A A 为正交矩阵
6、对称矩阵: A T = T A^T=T AT=T
二、矩阵的基本运算
1、加法、减法:矩阵对应元素位置直接进行加减法运算,矩阵形状不发生改变;
2、乘法:左行乘右列(矩阵能够进行乘法的前提是:矩阵的左行等于右列);
三、矩阵运算相关性质
矩阵运算不一定满足交换律: A B ≠ B A AB \not= BA AB=BA
数乘分配律:
(
λ
+
μ
)
A
=
λ
A
+
μ
A
(\lambda + \mu)A = \lambda A + \mu A
(λ+μ)A=λA+μA
λ ( A + B ) = λ A + λ B \lambda(A+ B) = \lambda A + \lambda B λ(A+B)=λA+λB
矩阵分配律:
(
A
B
)
C
=
A
(
B
C
)
(AB)C = A(BC)
(AB)C=A(BC)
A ( B + C ) A B + A C A(B+C) AB + AC A(B+C)AB+AC
( B + C ) A = B A + C A (B + C)A = BA + CA (B+C)A=BA+CA
E A = A E = A EA =AE =A EA=AE=A
转置相关性质:
(
A
T
)
T
=
A
(A^T)^T = A
(AT)T=A
( A + B ) T = A T + B T (A + B)^T = A^T + B^T (A+B)T=AT+BT
( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT(有些特殊)
模的性质:
∣
A
⋅
B
∣
=
∣
A
∣
⋅
∣
B
∣
|A \cdot B| = |A| \cdot |B|
∣A⋅B∣=∣A∣⋅∣B∣
∣ λ A ∣ = λ n ∣ A ∣ |\lambda A| = \lambda^n|A| ∣λA∣=λn∣A∣ ( n n n 为矩阵 A A A 的阶数)