前 言:作为当前先进的深度学习目标检测算法YOLOv5、v7系列算法,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLO系列算法的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。
解决问题:ICLR2022前段时间已经放榜,涌现了大量优秀的工作。动态卷积的工作:ODConv,其通过并行策略采用多维注意力机制沿核空间的四个维度学习互补性注意力。作为一种“即插即用”的操作,它可以轻易的嵌入到现有CNN网络中。并且实验结果表明它可提升大模型的性能,又可提升轻量型模型的性能
主要原理:
论文:Omni-Dimensional Dynamic Convolution | OpenReview
ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度动态卷积。ODConv通过并行策略采用多维注意力机制沿核空间的四个维度学习互补性注意力。作为一种“即插即用”的操作,它可以轻易的嵌入到现有CNN网络中。ImageNet分类与COCO检测任务上的实验验证了所提ODConv的优异性:即可提升大模型的性能,又可提升轻量型模型的性能,实乃万金油是也!值得一提的是,受益于其改进的特征提取能力,ODConv搭配一个卷积核时仍可取得与现有多核动态卷积相当甚至更优的性能。
添加方法:
第一步:common.py构建ODConv模块。部分代码示例如下。
class ODConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1,
reduction=0.0625, kernel_num=4):
super(ODConv2d, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.kernel_num = kernel_num
self.attention = Attention(in_planes, out_planes, kernel_size, groups=groups,
reduction=reduction, kernel_num=kernel_num)
self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes//groups, kernel_size, kernel_size),
requires_grad=True)
self._initialize_weights()
if self.kernel_size == 1 and self.kernel_num == 1:
self._forward_impl = self._forward_impl_pw1x
else:
self._forward_impl = self._forward_impl_common
第二步:yolo.py中注册ODConv模块。部分代码示例如下。
第三步:修改yaml文件,需要修改。
第四步:将train.py中改为本文的yaml文件即可,开始训练。
结 果:本人在多个数据集上做了大量实验,针对不同的数据集效果不同,需要大家进行实验。有效果有提升的情况占大多数。
预告一下:继续分享深度学习相关内容。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦
PS:系列改进算法不仅仅是可以添加进YOLOv5,也可以添加进任何其他的深度学习网络,不管是分类还是检测还是分割,主要是计算机视觉领域,都可能会有不同程度的提升效果。
最后,希望能互粉一下,做个朋友,一起学习交流。