子图复用优化是为了找到SQL执行计划中重复的节点,将其复用,避免这部分重复计算的逻辑。先回顾SQL执行的主要流程 parser -> validate -> logical optimize -> physical optimize -> translateToExecNode。
而子图复用的逻辑就是在这个阶段进行的
private[flink] def translateToExecNodeGraph(
optimizedRelNodes: Seq[RelNode],
isCompiled: Boolean): ExecNodeGraph = {
val nonPhysicalRel = optimizedRelNodes.filterNot(_.isInstanceOf[FlinkPhysicalRel])
if (nonPhysicalRel.nonEmpty) {
throw new TableException(
"The expected optimized plan is FlinkPhysicalRel plan, " +
s"actual plan is ${nonPhysicalRel.head.getClass.getSimpleName} plan.")
}
require(optimizedRelNodes.forall(_.isInstanceOf[FlinkPhysicalRel]))
// Rewrite same rel object to different rel objects
// in order to get the correct dag (dag reuse is based on object not digest)
val shuttle = new SameRelObjectShuttle()
val relsWithoutSameObj = optimizedRelNodes.map(_.accept(shuttle))
// reuse subplan
val reusedPlan = SubplanReuser.reuseDuplicatedSubplan(relsWithoutSameObj, tableConfig)
// convert FlinkPhysicalRel DAG to ExecNodeGraph
val generator = new ExecNodeGraphGenerator()
val execGraph = generator.generate(reusedPlan.map(_.asInstanceOf[FlinkPhysicalRel]), isCompiled)
// process the graph
val context = new ProcessorContext(this)
val processors = getExecNodeGraphProcessors
processors.foldLeft(execGraph)((graph, processor) => processor.process(graph, context))
}
可以看到这里首先会校验relNodes都是FlinkPhysicalRel
物理执行计划的节点
require(optimizedRelNodes.forall(_.isInstanceOf[FlinkPhysicalRel]))
SameRelObjectShuttle
/**
* Rewrite same rel object to different rel objects.
*
* <p>e.g.
* {{{
* Join Join
* / \ / \
* Filter1 Filter2 => Filter1 Filter2
* \ / | |
* Scan Scan1 Scan2
* }}}
* After rewrote, Scan1 and Scan2 are different object but have same digest.
*/
class SameRelObjectShuttle extends DefaultRelShuttle {
private val visitedNodes = Sets.newIdentityHashSet[RelNode]()
override def visit(node: RelNode): RelNode = {
val visited = !visitedNodes.add(node)
var change = false
val newInputs = node.getInputs.map {
input =>
val newInput = input.accept(this)
change = change || (input ne newInput)
newInput
}
if (change || visited) {
node.copy(node.getTraitSet, newInputs)
} else {
node
}
}
}
然后进行rel节点重写,RelShuttle的作用就是提供visit的模式根据实现的逻辑来替换树中的某些节点。可以看到这个实现中会将 同一个objec(注意这里保存visitedNodes使用的是identity hash set) 第二次访问时 copy成一个新的对象,但是有相同的digest,这一步的目的是什么呢?
我们往下面看在后续生成ExecNode时, 会创建一个IdentityHashMap 来保存访问过的Rels,所以意思就是真正生成ExecNode时,是和Rels对象一一对应的。
private final Map<FlinkPhysicalRel, ExecNode<?>> visitedRels = new IdentityHashMap();
private ExecNode<?> generate(FlinkPhysicalRel rel, boolean isCompiled) {
ExecNode<?> execNode = visitedRels.get(rel);
if (execNode != null) {
return execNode;
}
if (rel instanceof CommonIntermediateTableScan) {
throw new TableException("Intermediate RelNode can't be converted to ExecNode.");
}
List<ExecNode<?>> inputNodes = new ArrayList<>();
for (RelNode input : rel.getInputs()) {
inputNodes.add(generate((FlinkPhysicalRel) input, isCompiled));
}
execNode = rel.translateToExecNode(isCompiled);
// connects the input nodes
List<ExecEdge> inputEdges = new ArrayList<>(inputNodes.size());
for (ExecNode<?> inputNode : inputNodes) {
inputEdges.add(ExecEdge.builder().source(inputNode).target(execNode).build());
}
execNode.setInputEdges(inputEdges);
visitedRels.put(rel, execNode);
return execNode;
}
看到这里上面将同一个object 拆成两个的目的就更不可理解了,因为本来是一个object的话在这里天然就复用了,但是拆成2个反而就不能复用了。
这里的目的是先将相同的object被重复引用的节点拆开,然后再根据digest相同以及内部规则来决定是否复用。这样就可以有Flink引擎来控制哪些节点是可以合并的。
SubplanReuseContext
在context中通过ReusableSubplanVisitor
构造两组映射关系
// mapping a relNode to its digest
private val mapRelToDigest = Maps.newIdentityHashMap[RelNode, String]()
// mapping the digest to RelNodes
private val mapDigestToReusableNodes = new util.HashMap[String, util.List[RelNode]]()
中间的逻辑比较简单就是遍历整棵树,查找是否存在可reusable的节点,怎么判断可reusable呢?
- 同一digest下,挂了多个RelNode节点,那么这一组RelNode是同一语义的,是可以复用的候选
- 节点没有disable reusable
/** Returns true if the given node is reusable disabled */
private def isNodeReusableDisabled(node: RelNode): Boolean = {
node match {
// TableSourceScan node can not be reused if reuse TableSource disabled
case _: FlinkLogicalLegacyTableSourceScan | _: CommonPhysicalLegacyTableSourceScan |
_: FlinkLogicalTableSourceScan | _: CommonPhysicalTableSourceScan =>
!tableSourceReuseEnabled
// Exchange node can not be reused if its input is reusable disabled
case e: Exchange => isNodeReusableDisabled(e.getInput)
// TableFunctionScan and sink can not be reused
case _: TableFunctionScan | _: LegacySink | _: Sink => true
case _ => false
}
}
例如TableFunctionScan就不能被Reuse(这个原因还没理解),或者exchange只有input被reuse时,该节点才能复用
SubplanReuseShuttle
在以上的visit执行完之后以及知道哪些节点是可以复用的了,最后通过一个Shuttle来将可复用的节点进行替换
class SubplanReuseShuttle(context: SubplanReuseContext) extends DefaultRelShuttle {
private val mapDigestToNewNode = new util.HashMap[String, RelNode]()
override def visit(rel: RelNode): RelNode = {
val canReuseOtherNode = context.reuseOtherNode(rel)
val digest = context.getRelDigest(rel)
if (canReuseOtherNode) {
val newNode = mapDigestToNewNode.get(digest)
if (newNode == null) {
throw new TableException("This should not happen")
}
newNode
} else {
val newNode = visitInputs(rel)
mapDigestToNewNode.put(digest, newNode)
newNode
}
}
}
实现的方式就是记录每个digest对应的newNode,当可以复用时,那么直接返回该复用digest对应的RelNode(替换了原先的digest相同,对象不同的RelNode),这样整棵树中可复用的节点又重新合并了。