LRU缓存原理

时间:2022-12-24 00:14:29

LRU(Least Recently Used)  LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。

采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

1.LruCache的介绍

LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,

把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

2.LruCache的使用

LruCache的使用非常简单,我们就已图片缓存为例。

 int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
int cacheSize = maxMemory/8;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getRowBytes()*value.getHeight()/1024;
}
};

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。

②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

三、LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,

即一直没访问的对象,将放在队首,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

LRU缓存原理

这个队列是由LinkedHashMap来维护。

LinkedHashMap是由数组+双向链表的数据结构来实现的。

其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。
 
通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序

以具体例子解释:
当设置为true时

public static final void main(String[] args) {
LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
map.put(0, 0);
map.put(1, 1);
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
map.put(6, 6);
map.get(1);
map.get(2); for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue()); }
}

输出结果:

0:0
3:3
4:4
5:5
6:6
1:1
2:2

即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。
下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序

3.1  put() 方法

public final V put(K key, V value) {
//不可为空,否则抛出异常
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
//插入的缓存对象值加1
putCount++;
//增加已有缓存的大小
size += safeSizeOf(key, value);
//向map中加入缓存对象
previous = map.put(key, value);
//如果已有缓存对象,则缓存大小恢复到之前
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
//entryRemoved()是个空方法,可以自行实现
if (previous != null) {
entryRemoved(false, key, previous, value);
}
//调整缓存大小(关键方法)
trimToSize(maxSize);
return previous;
}
可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。
trimToSize()方法(LRU的核心算法)
public void trimToSize(int maxSize) {
//死循环
while (true) {
K key;
V value;
synchronized (this) {
//如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
//如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
if (size <= maxSize || map.isEmpty()) {
break;
}
//迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
key = toEvict.getKey();
value = toEvict.getValue();
//删除该对象,并更新缓存大小
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

3.2  get() 方法

public final V get(K key) {
//key为空抛出异常
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
//获取对应的缓存对象
//get()方法会实现将访问的元素更新到队列头部的功能
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}

其中LinkedHashMap的get()方法如下:

public V get(Object key) {
LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
if (e == null)
return null;
//实现排序的关键方法
e.recordAccess(this);
return e.value;
}

 recordAccess()方法如下:

void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//判断是否是访问排序
if (lm.accessOrder) {
lm.modCount++;
//删除此元素
remove();
//将此元素移动到队列的头部
addBefore(lm.header);
}
}
总结:由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。
 
 
作者:Ruheng
链接:https://www.jianshu.com/p/b49a111147ee
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。