简介
参数模型 vs. 非参数模型
参数模型
training examples need to be slowly learnt by the model into its parameters.非参数模型
allow novel examples to be rapidly assimilated, whilst not suffering from catastrophic forgetting.
创新点
at the modeling level
模型设计中, 借鉴了当下流行的注意力LSTM, 考虑了整个参考集合的贡献.
We propose Matching Nets (MN), a neural network which uses recent advances in attention and memory that enable rapid learning.
at the training procedure
训练过程中,尽量模拟测试流程,使用小样本构造minibatch
our training procedure is based on a simple machine learning principle: test and train conditions must match.
模型结构
给定一个参考集, $ S = \left \{ (x_{i}, y_{i}) \right \}_{i=1}^{k} $
, 定义一个映射$ S \rightarrow C_{S}(x)=p(y|x) $
, 其中$ P $
由网络参数确定.
在预测阶段, 给定未知的样本$ {x}' $
和参考集$ {S}' $
, 预测的标签为 $ argmax_{y} P(y|{x}', {S}') $
最简单的形式y为: $ y = \sum_{i=1}^{k}a(x, x_{i})y_{i} $
, 其中$ a $
是attention机制.
然而与通常的attention memory机制不同, 这里的本质上是非参数的. 当参考集变大时, memory也变大. 这种定义的分类器很灵活, 可以很容易适应新的参考集.
attention kernel
匹配函数, 相当于前述函数 $ a(x, x_{i}) $
, 即如何考察测试样本特征 $ x $
和参考集样本特征 $ x_{i} $
之间的匹配程度.
可以有以下选择:
cosine : $$ a(x, x_{i}) = c(x, x_{i}) $$
Softmax :
$ a(x, x_{i}) = exp[c(x, x_{i})] / \sum_{j}exp[c(x, x_{j})] $
cosine(FCE) :
$ a(x, x_{i}) = c(f(x), g(x_{i})) $
Softmax(FCE) :
$ a(x, x_{i}) = exp[c(f(x), g(x_{i}))] / \sum_{j}exp[c(f(x), g(x_{j}))] $
其中c表示余弦距离, FCE表示Full Conditional Embedding.
Full Context Embeddings
在通常的image或者是sentence的表示的基础上(如CNN的表示, embedding的表示等), 可以进一步加上 FCE, 使得到的 representation 依赖于support set.
$ g(x_{i}) $
应该依赖于参考集 $ S $
, 另外 $ S $
也应该影响 $ y(x) $
.
-
$ g(x_{i}, S) $
使用 bilstm, 在$ S $
的上下文中(将其视为一个序列)编码$ x_{i} $
\vec{h}_{i}, \vec{c}_{i} = LSTM ({g_{i}}', \vec{h}_{i-1}, \vec{c}_{i-1})
\bar{h}_{i}, \bar{c}_{i} = LSTM ({g_{i}}', \bar{h}_{i+1}, \bar{c}_{i+1})
g(x_{i}, S) = \vec{h}_{i} + \bar{h}_{i} + {g}'(x_{i})
其中$ {g}'(x) $
是一个神经网络, 比如图像任务中的CNN, 和自然语言任务中的word embedding.
$ f(x, S) $
f(x, S) = attLSTM({f}'(x), g(S), K)
其中$ {f}'(x) $
是一个神经网络, 比如图像任务中的CNN, 和自然语言任务中的word embedding.
这里和之前类似, 注意力函数也是softmax形式, 用其他所有参考集样本归一化.
换言之, 除了以测试样本作为输入, 在每一个步骤中, 还要根据LSTM状态h, 决定把注意力放在哪一些参考集样本上.
训练策略
训练策略是本文的闪光之处, 再一次验证了机器学习实战中这条颠扑不破的真理: 怎么用, 怎么训.
训练流程
训练过程中,迭代一次的流程如下:
- 选择少数几个类别(例如5类),在每个类别中选择少量样本(例如每类5个);
- 将选出的集合划分:参考集,测试集;
- 利用本次迭代的参考集,计算测试集的误差;
- 计算梯度,更新参数
这样的一个流程文中称为episode。
在测试过程中,同样遵守此流程:
- 选择少数几个类别,在每个类别中选择少量样本;
- 将选出的集合划分:参考集,测试集;
- 利用本次迭代的参考集,计算测试集的误差;
注意,在完成训练之后,所有训练中用过的类别,都不再出现在后续真正测试中。换言之,训练集和测试集的类别互不包含。
参考资料
论文 Matching Networks for One Shot Learning
博客 Matching Networks for One Shot Learning
Tensorflow实现: 这里的实现似乎没有对f, g分开处理, 对FCE的处理方式也和文章说的不太一样.