We use sockets a lot in a program that I work on and we handle connections from up to about 100 machines simultaneously at times. We have a combination of non-blocking I/O in use with a state table to manage it and traditional Java sockets which use threads.
我们在我工作的程序中经常使用套接字,并且我们有时同时处理多达约100台机器的连接。我们将非阻塞I / O与状态表和管理它的传统Java套接字结合使用。
We have quite a few problems with non-blocking sockets and I personally like using threads to handle sockets much better. So my question is:
我们在非阻塞套接字方面存在很多问题,我个人更喜欢使用线程来处理套接字。所以我的问题是:
How much saving is made by using non-blocking sockets on a single thread? How bad is the context switching involved in using threads and how many concurrent connections can you scale to using the threaded model in Java?
在单个线程上使用非阻塞套接字可以节省多少钱?使用线程时涉及的上下文切换有多糟糕,以及在Java中使用线程模型可以扩展多少并发连接?
3 个解决方案
#1
10
I/O and non-blocking I/O selection depends from your server activity profile. E.g. if you use long-living connections and thousands of clients I/O may become too expensive because of system resources exhaustion. However, direct I/O that doesn't crowd out CPU cache is faster than non-blocking I/O. There is a good article about that - Writing Java Multithreaded Servers - whats old is new.
I / O和非阻塞I / O选择取决于您的服务器活动配置文件。例如。如果你使用长期连接和成千上万的客户端,由于系统资源耗尽,I / O可能会变得太昂贵。但是,不会挤出CPU缓存的直接I / O比非阻塞I / O更快。有一篇很好的文章 - 写Java多线程服务器 - 什么是旧的。
About context switch cost - it's rather chip operation. Consider the simple test below:
关于上下文切换成本 - 它相当于芯片操作。考虑下面的简单测试:
package com;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
public class AAA {
private static final long DURATION = TimeUnit.NANOSECONDS.convert(30, TimeUnit.SECONDS);
private static final int THREADS_NUMBER = 2;
private static final ThreadLocal<AtomicLong> COUNTER = new ThreadLocal<AtomicLong>() {
@Override
protected AtomicLong initialValue() {
return new AtomicLong();
}
};
private static final ThreadLocal<AtomicLong> DUMMY_DATA = new ThreadLocal<AtomicLong>() {
@Override
protected AtomicLong initialValue() {
return new AtomicLong();
}
};
private static final AtomicLong DUMMY_COUNTER = new AtomicLong();
private static final AtomicLong END_TIME = new AtomicLong(System.nanoTime() + DURATION);
private static final List<ThreadLocal<CharSequence>> DUMMY_SOURCE = new ArrayList<ThreadLocal<CharSequence>>();
static {
for (int i = 0; i < 40; ++i) {
DUMMY_SOURCE.add(new ThreadLocal<CharSequence>());
}
}
private static final Set<Long> COUNTERS = new ConcurrentSkipListSet<Long>();
public static void main(String[] args) throws Exception {
final CountDownLatch startLatch = new CountDownLatch(THREADS_NUMBER);
final CountDownLatch endLatch = new CountDownLatch(THREADS_NUMBER);
for (int i = 0; i < THREADS_NUMBER; i++) {
new Thread() {
@Override
public void run() {
initDummyData();
startLatch.countDown();
try {
startLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
while (System.nanoTime() < END_TIME.get()) {
doJob();
}
COUNTERS.add(COUNTER.get().get());
DUMMY_COUNTER.addAndGet(DUMMY_DATA.get().get());
endLatch.countDown();
}
}.start();
}
startLatch.await();
END_TIME.set(System.nanoTime() + DURATION);
endLatch.await();
printStatistics();
}
private static void initDummyData() {
for (ThreadLocal<CharSequence> threadLocal : DUMMY_SOURCE) {
threadLocal.set(getRandomString());
}
}
private static CharSequence getRandomString() {
StringBuilder result = new StringBuilder();
Random random = new Random();
for (int i = 0; i < 127; ++i) {
result.append((char)random.nextInt(0xFF));
}
return result;
}
private static void doJob() {
Random random = new Random();
for (ThreadLocal<CharSequence> threadLocal : DUMMY_SOURCE) {
for (int i = 0; i < threadLocal.get().length(); ++i) {
DUMMY_DATA.get().addAndGet(threadLocal.get().charAt(i) << random.nextInt(31));
}
}
COUNTER.get().incrementAndGet();
}
private static void printStatistics() {
long total = 0L;
for (Long counter : COUNTERS) {
total += counter;
}
System.out.printf("Total iterations number: %d, dummy data: %d, distribution:%n", total, DUMMY_COUNTER.get());
for (Long counter : COUNTERS) {
System.out.printf("%f%%%n", counter * 100d / total);
}
}
}
I made four tests for two and ten thread scenarios and it shows performance loss is about 2.5% (78626 iterations for two threads and 76754 for ten threads), System resources are used by the threads approximately equally.
我针对两个和十个线程场景进行了四次测试,它显示性能损失约为2.5%(两个线程为78626次迭代,十个线程为76754次),线程大致相等地使用系统资源。
Also 'java.util.concurrent' authors suppose context switch time to be about 2000-4000 CPU cycles:
此外,'java.util.concurrent'作者假设上下文切换时间约为2000-4000个CPU周期:
public class Exchanger<V> {
...
private static final int NCPU = Runtime.getRuntime().availableProcessors();
....
/**
* The number of times to spin (doing nothing except polling a
* memory location) before blocking or giving up while waiting to
* be fulfilled. Should be zero on uniprocessors. On
* multiprocessors, this value should be large enough so that two
* threads exchanging items as fast as possible block only when
* one of them is stalled (due to GC or preemption), but not much
* longer, to avoid wasting CPU resources. Seen differently, this
* value is a little over half the number of cycles of an average
* context switch time on most systems. The value here is
* approximately the average of those across a range of tested
* systems.
*/
private static final int SPINS = (NCPU == 1) ? 0 : 2000;
#2
1
For your questions the best method might be to build a test program, get some hard measurement data and make the best decision based on the data. I usually do this when trying to make such decisions, and it helps to have hard numbers to bring with you to back up your argument.
对于您的问题,最好的方法可能是构建测试程序,获取一些硬测量数据并根据数据做出最佳决策。我通常在尝试做出这样的决定时会这样做,并且有助于让你用硬数据来支持你的论点。
Before starting though, how many threads are you talking about? And with what type of hardware are you running your software?
在开始之前,你在谈论多少线程?您运行软件的硬件类型是什么?
#3
1
For 100 connections are are unlikely to have a problem with blocking IO and using two threads per connection (one for read and write) That's the simplest model IMHO.
对于100个连接,阻塞IO并且每个连接使用两个线程(一个用于读取和写入)不太可能有问题。这是最简单的模型恕我直言。
However you may find using JMS is a better way to manage your connections. If you use something like ActiveMQ you can consolidate all your connections.
但是,您可能会发现使用JMS是管理连接的更好方法。如果您使用ActiveMQ之类的东西,则可以整合所有连接。
#1
10
I/O and non-blocking I/O selection depends from your server activity profile. E.g. if you use long-living connections and thousands of clients I/O may become too expensive because of system resources exhaustion. However, direct I/O that doesn't crowd out CPU cache is faster than non-blocking I/O. There is a good article about that - Writing Java Multithreaded Servers - whats old is new.
I / O和非阻塞I / O选择取决于您的服务器活动配置文件。例如。如果你使用长期连接和成千上万的客户端,由于系统资源耗尽,I / O可能会变得太昂贵。但是,不会挤出CPU缓存的直接I / O比非阻塞I / O更快。有一篇很好的文章 - 写Java多线程服务器 - 什么是旧的。
About context switch cost - it's rather chip operation. Consider the simple test below:
关于上下文切换成本 - 它相当于芯片操作。考虑下面的简单测试:
package com;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
public class AAA {
private static final long DURATION = TimeUnit.NANOSECONDS.convert(30, TimeUnit.SECONDS);
private static final int THREADS_NUMBER = 2;
private static final ThreadLocal<AtomicLong> COUNTER = new ThreadLocal<AtomicLong>() {
@Override
protected AtomicLong initialValue() {
return new AtomicLong();
}
};
private static final ThreadLocal<AtomicLong> DUMMY_DATA = new ThreadLocal<AtomicLong>() {
@Override
protected AtomicLong initialValue() {
return new AtomicLong();
}
};
private static final AtomicLong DUMMY_COUNTER = new AtomicLong();
private static final AtomicLong END_TIME = new AtomicLong(System.nanoTime() + DURATION);
private static final List<ThreadLocal<CharSequence>> DUMMY_SOURCE = new ArrayList<ThreadLocal<CharSequence>>();
static {
for (int i = 0; i < 40; ++i) {
DUMMY_SOURCE.add(new ThreadLocal<CharSequence>());
}
}
private static final Set<Long> COUNTERS = new ConcurrentSkipListSet<Long>();
public static void main(String[] args) throws Exception {
final CountDownLatch startLatch = new CountDownLatch(THREADS_NUMBER);
final CountDownLatch endLatch = new CountDownLatch(THREADS_NUMBER);
for (int i = 0; i < THREADS_NUMBER; i++) {
new Thread() {
@Override
public void run() {
initDummyData();
startLatch.countDown();
try {
startLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
while (System.nanoTime() < END_TIME.get()) {
doJob();
}
COUNTERS.add(COUNTER.get().get());
DUMMY_COUNTER.addAndGet(DUMMY_DATA.get().get());
endLatch.countDown();
}
}.start();
}
startLatch.await();
END_TIME.set(System.nanoTime() + DURATION);
endLatch.await();
printStatistics();
}
private static void initDummyData() {
for (ThreadLocal<CharSequence> threadLocal : DUMMY_SOURCE) {
threadLocal.set(getRandomString());
}
}
private static CharSequence getRandomString() {
StringBuilder result = new StringBuilder();
Random random = new Random();
for (int i = 0; i < 127; ++i) {
result.append((char)random.nextInt(0xFF));
}
return result;
}
private static void doJob() {
Random random = new Random();
for (ThreadLocal<CharSequence> threadLocal : DUMMY_SOURCE) {
for (int i = 0; i < threadLocal.get().length(); ++i) {
DUMMY_DATA.get().addAndGet(threadLocal.get().charAt(i) << random.nextInt(31));
}
}
COUNTER.get().incrementAndGet();
}
private static void printStatistics() {
long total = 0L;
for (Long counter : COUNTERS) {
total += counter;
}
System.out.printf("Total iterations number: %d, dummy data: %d, distribution:%n", total, DUMMY_COUNTER.get());
for (Long counter : COUNTERS) {
System.out.printf("%f%%%n", counter * 100d / total);
}
}
}
I made four tests for two and ten thread scenarios and it shows performance loss is about 2.5% (78626 iterations for two threads and 76754 for ten threads), System resources are used by the threads approximately equally.
我针对两个和十个线程场景进行了四次测试,它显示性能损失约为2.5%(两个线程为78626次迭代,十个线程为76754次),线程大致相等地使用系统资源。
Also 'java.util.concurrent' authors suppose context switch time to be about 2000-4000 CPU cycles:
此外,'java.util.concurrent'作者假设上下文切换时间约为2000-4000个CPU周期:
public class Exchanger<V> {
...
private static final int NCPU = Runtime.getRuntime().availableProcessors();
....
/**
* The number of times to spin (doing nothing except polling a
* memory location) before blocking or giving up while waiting to
* be fulfilled. Should be zero on uniprocessors. On
* multiprocessors, this value should be large enough so that two
* threads exchanging items as fast as possible block only when
* one of them is stalled (due to GC or preemption), but not much
* longer, to avoid wasting CPU resources. Seen differently, this
* value is a little over half the number of cycles of an average
* context switch time on most systems. The value here is
* approximately the average of those across a range of tested
* systems.
*/
private static final int SPINS = (NCPU == 1) ? 0 : 2000;
#2
1
For your questions the best method might be to build a test program, get some hard measurement data and make the best decision based on the data. I usually do this when trying to make such decisions, and it helps to have hard numbers to bring with you to back up your argument.
对于您的问题,最好的方法可能是构建测试程序,获取一些硬测量数据并根据数据做出最佳决策。我通常在尝试做出这样的决定时会这样做,并且有助于让你用硬数据来支持你的论点。
Before starting though, how many threads are you talking about? And with what type of hardware are you running your software?
在开始之前,你在谈论多少线程?您运行软件的硬件类型是什么?
#3
1
For 100 connections are are unlikely to have a problem with blocking IO and using two threads per connection (one for read and write) That's the simplest model IMHO.
对于100个连接,阻塞IO并且每个连接使用两个线程(一个用于读取和写入)不太可能有问题。这是最简单的模型恕我直言。
However you may find using JMS is a better way to manage your connections. If you use something like ActiveMQ you can consolidate all your connections.
但是,您可能会发现使用JMS是管理连接的更好方法。如果您使用ActiveMQ之类的东西,则可以整合所有连接。