对动态规划的一点理解 Adjacent Bit Counts

时间:2022-08-28 23:53:33

Adjacent Bit Counts

时间限制:1000 ms | 内存限制:65535 KB

难度:4

  • 描述

  • For a string of n bits x1, x2, x3, …, xn, the adjacent bit count of the string is given by fun(x) = x1*x2 + x2*x3 + x3*x 4 + … + xn-1*x n
    which counts the number of times a 1 bit is adjacent to another 1 bit. For example:

    Fun(011101101) = 3

    Fun(111101101) = 4

    Fun (010101010) = 0

    Write a program which takes as input integers n and p and returns the number of bit strings x of n bits (out of 2ⁿ) that satisfy Fun(x) = p.

    For example, for 5 bit strings, there are 6 ways of getting fun(x) = 2:

    11100, 01110, 00111, 10111, 11101, 11011

    • 输入

    • On the first line of the input is a single positive integer k, telling the number of test cases to follow. 1 ≤ k ≤ 10 Each case is a single line that contains a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (p) giving the desired adjacent bit count. 1 ≤ n , p ≤ 100

    • 输出

    • For each test case, output a line with the number of n-bit strings with adjacent bit count equal to p.

    • 样例输入

    • 2
      5 2
      20 8
    • 样例输出

    • 6
      63426
我简单描述下题:
用户输入正整数 n ,k
X1,X2...只能为0或1
输出满足
X1*X2+X2*X3+....+X(n-1)*Xn=k;
情况的个数
穷举法的话肯定会超时。

代码摘自: http://blog.csdn.net/air_one/article/details/11750509

 

dp[达到的和][位置][0或1];

 

1 dp[101][101][2]

 

初始化数组:

for(j = 2; j < MAXN; j++)
{
dp[0][j][0] = dp[0][j-1][1] + dp[0][j-1][0];
dp[0][j][1] = dp[0][j-1][0];


}


 

注意:dp[101][101][2]为全局变量,所以C语言自动把空白部分赋值为0;

dp[0][j][0] = dp[0][j-1][1] + dp[0][j-1][0];     即总和为0,第j位为0的情况数=总和为0,第j-1位为1的情况数  + 总和为0,第j-1位为0的情况数

 dp[0][j][1] = dp[0][j-1][0]; 同理

 

看计算过程:

for(i = 1; i < MAXN; i++)
for(j = 1; j < MAXN; j++)
{
dp[i][j][0] = dp[i][j-1][0] + dp[i][j-1][1];
dp[i][j][1] = dp[i-1][j-1][1] + dp[i][j-1][0];
}
return 0;


 

dp[i][j][0] = dp[i][j-1][0] + dp[i][j-1][1];    达到i,且j位为0的情况数= 达到i,第j-1位为0的情况数 + 达到i,第j-1位为1的情况数

 

同理: dp[i][j][1] = dp[i-1][j-1][1] + dp[i][j-1][0];   达到i,且j位为1的情况数= 达到i-1,第j-1位为1的情况数 + 达到i,第j-1位为0的情况数