Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3 分析:这道题的关键是找出规律,可以举几个例子帮助理解,化抽象为具体。实际上就是左子树书目*右子树的数目。此题用递归和循环都可以。用递归注意超时哦,此题我用的是循环。
class Solution {
public:
int numTrees(int n) {
int sum=;
if(n<=)
return n;
int* num=new int[n+];
num[]=;
num[]=;
for(int i=;i<=n;++i)
{
num[i]=;
for(int k=;k<i;++k)
{
int left=num[k];//保存左子树的数目
int right=num[i-k-];//保存右子树的数目
num[i]+=left*right;
}
}
sum=num[n];
delete[] num;
return sum;
}
};
python实现:
class Solution:
# @return an integer
def numTrees(self, n):
if n<=1:
return n
num=[]
for i in range(n+1):
num.append(0)
num[0]=1
num[1]=1
for j in range(2,n+1):
for k in range(j):
left=num[k]
right=num[j-k-1]
num[j]+=left*right
sum=num[n]
return sum