http://codeforces.com/problemset/problem/896/C
题意:
对于一个随机序列,执行以下操作:
区间赋值
区间加
区间求第k小
区间求k次幂的和
对于随机序列,可以使用Old Driver Tree
就是将序列中,连续的相同值域合并为一段
然后暴力操作
#include<set>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; #define N 100001 int n,m,seed,vmax,ret;
int a[N]; struct node
{
int l,r;
mutable LL val;
bool operator < (node p) const
{
return l<p.l;
}
node(int l=,int r=,LL val=):l(l),r(r),val(val) { }
}; set<node>s; typedef set<node> :: iterator seti; vector<pair<LL,int> >par; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int rnd()
{
ret=seed;
seed=((LL)seed*+)%;
return ret;
} void split(int pos)
{
seti it=s.lower_bound(node(pos,-,-));
if(it==s.end() || it->l>pos)
{
--it;
int l=it->l,r=it->r;
LL val=it->val;
s.erase(it);
s.insert(node(l,pos-,val));
s.insert(node(pos,r,val));
}
} LL quickpow(LL a,LL x,LL mod)
{
LL res=;
for(;x;x>>=,a=a*a%mod)
if(x&) res=res*a%mod;
return res;
} int main()
{
read(n);
read(m);
read(seed);
read(vmax);
for(int i=;i<=n;++i) a[i]=rnd()%vmax+;
int r;
for(int i=;i<=n;)
{
r=i+;
while(a[r]==a[i]) r++;
s.insert(node(i,r-,(LL)a[i]));
i=r;
}
int op,l,x,y;
for(int i=;i<=m;++i)
{
op=rnd()%+;
l=rnd()%n+;
r=rnd()%n+;
if(l>r) swap(l,r);
if(op==) x=rnd()%(r-l+)+;
else x=rnd()%vmax+;
if(op==) y=rnd()%vmax+;
split(l);
if(r<n) split(r+);
seti itl=s.lower_bound(node(l,-,-));
seti itr=s.upper_bound(node(r,-,-));
if(op==)
{
for(seti it=itl;it!=itr;++it) it->val+=x;
}
else if(op==)
{
s.erase(itl,itr);
s.insert(node(l,r,x));
}
else if(op==)
{
par.clear();
for(seti it=itl;it!=itr;++it)
par.push_back(make_pair(it->val,it->r-it->l+));
sort(par.begin(),par.end());
for(int i=;i<par.size();++i)
{
x-=par[i].second;
if(x<=)
{
cout<<par[i].first<<'\n';
break;
}
}
}
else
{
LL ans=;
for(seti it=itl;it!=itr;++it)
{
LL val=quickpow(it->val%y,x,y);
val=val*(it->r-it->l+)%y;
ans=(ans+val)%y;
}
cout<<ans<<'\n';
}
}
return ;
}
2 seconds
256 megabytes
standard input
standard output
— Willem...
— What's the matter?
— It seems that there's something wrong with Seniorious...
— I'll have a look...
Seniorious is made by linking special talismans in particular order.
After over 500 years, the carillon is now in bad condition, so Willem decides to examine it thoroughly.
Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is an integer ai.
In order to maintain it, Willem needs to perform m operations.
There are four types of operations:
- 1 l r x: For each i such that l ≤ i ≤ r, assign ai + x to ai.
- 2 l r x: For each i such that l ≤ i ≤ r, assign x to ai.
- 3 l r x: Print the x-th smallest number in the index range [l, r], i.e. the element at the x-th position if all the elements ai such thatl ≤ i ≤ r are taken and sorted into an array of non-decreasing integers. It's guaranteed that 1 ≤ x ≤ r - l + 1.
- 4 l r x y: Print the sum of the x-th power of ai such that l ≤ i ≤ r, modulo y, i.e. .
The only line contains four integers n, m, seed, vmax (1 ≤ n, m ≤ 105, 0 ≤ seed < 109 + 7, 1 ≤ vmax ≤ 109).
The initial values and operations are generated using following pseudo code:
def rnd(): ret = seed
seed = (seed * 7 + 13) mod 1000000007
return ret for i = 1 to n: a[i] = (rnd() mod vmax) + 1 for i = 1 to m: op = (rnd() mod 4) + 1
l = (rnd() mod n) + 1
r = (rnd() mod n) + 1 if (l > r):
swap(l, r) if (op == 3):
x = (rnd() mod (r - l + 1)) + 1
else:
x = (rnd() mod vmax) + 1 if (op == 4):
y = (rnd() mod vmax) + 1
Here op is the type of the operation mentioned in the legend.
For each operation of types 3 or 4, output a line containing the answer.
10 10 7 9
2
1
0
3
10 10 9 9
1
1
3
3
In the first example, the initial array is {8, 9, 7, 2, 3, 1, 5, 6, 4, 8}.
The operations are:
- 2 6 7 9
- 1 3 10 8
- 4 4 6 2 4
- 1 4 5 8
- 2 1 7 1
- 4 7 9 4 4
- 1 2 7 9
- 4 5 8 1 1
- 2 5 7 5
- 4 3 10 8 5