逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent
对于有m个样本的训练集
,
。在上篇介绍决策边界的时候已经介绍过了在logistic回归中的假设函数为:
。因此我们定义logistic回归的代价函
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1UazFNekkzTkRJMw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXlORFUwTkRRMw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXlOakV4TXpjeQ%3D%3D.jpg?w=700)
数(cost function)为:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXpNVE0wT1RZeA%3D%3D.jpg?w=700)
下面来解释下这两个公式,先来看y=1时,
,画出
的函数图像为:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXpOVE13TXpnNA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXpOakE0TVRjNA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVFl3TkRBMk1Ua3dOVEkwTlRFeA%3D%3D.jpg?w=700)
从图中可以看出,y=1,当预测值
时,可以看出代价函数cost的值为0,这正是我们希望的。如果预测值
即
,意思是预测y=1的概率为0,但是事实上y=1,因此代价函数
相当于给学习算法一个惩罚。
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTBPREExT0RJMQ%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFNVEl5TlRjMQ%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFNREU1T0RBNQ%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFNakk0TlRjeg%3D%3D.jpg?w=700)
同理我们也可以画出当y=0时,函数
的图像:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFNelV6TlRjdw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVFl3TkRBMk1Ua3lPVFEzTURBMg%3D%3D.jpg?w=700)
同样也能看出上面y=1时介绍的那些信息,我就不再说了。
对于上面的代价函数
,其中
可以写成更加简洁的形式:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFOekEwTVRJNQ%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSXlNRFF4T1RneA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSTFNREE1TWpreA%3D%3D.jpg?w=700)
上面这个公式更加简洁,可以看出,当y=1时,公式变为
,y=0时,公式变为
,这与上面分段写的公式完全等价。因此代价函数为:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qQXpOVE13TXpnNA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qRTFNelV6TlRjdw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSTBOREE1TURjMQ%3D%3D.jpg?w=700)
为了求解使
最小的参数
,还是要用梯度下降(gradient descent),即:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSXpOREV6T1RFMw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSXpORFEzT0RRNA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSXpPVFU1TWpnMg%3D%3D.jpg?w=700)
看来其和线性回归中的梯度下降函数形式一模一样,但其实是不一样的,因为在logistic回归中
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSTBNVE0yTkRrMg%3D%3D.jpg?w=700)
为了让大家明白是如何求导
的(即
),我把这个公式的求导过程写一下:
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qSXpOREV6T1RFMw%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qTXhORE0wTXpjeQ%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVFl3TkRBM01UUXhNelU0TVRjMA%3D%3D.jpg?w=700)
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGN3TmpFMU1UTTFNREk1T0RJNQ%3D%3D.jpg?w=700)
大家可以自己在纸上推推,对求导不熟悉的可以去补补高数上,微积分。
关于logistic回归里的代价函数和梯度下降就介绍到这。还有一些高级优化算法,如 conjugate gradient、BFGS和L-BFGS这些算法不需要手动选择学习率
,而且收敛的速度要远快于梯度下降。但是这些算法太过复杂,不太容易搞明白。
![逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent 逻辑斯谛回归(代价函数,梯度下降) logistic regression--cost function and gradient descent](https://image.shishitao.com:8440/aHR0cHM6Ly93d3cuaXRkYWFuLmNvbS9nby9hSFIwY0RvdkwybHRaeTVpYkc5bkxtTnpaRzR1Ym1WMEx6SXdNVGd3TVRJME1qTXhOVE0wTURFdw%3D%3D.jpg?w=700)
注意:再强调一下,写博客不容易,尤其编辑公式很花费时间。转载或者引用请注明原文作者和链接,尊重原创。最近发现有人公然复制博客当成自己的原创,这种行为不值得尊重。