Does anyone know how to add x and y axis title/labels for a Bokeh figure? E.g. X-axis: time, Y-axis: stock price.
有人知道如何为Bokeh图形添加x和y轴标题/标签吗?x轴:时间,y轴:股票价格。
Thanks a lot!
谢谢!
3 个解决方案
#1
20
Bokeh 0.11.1
As @bigreddot kindly points out, the user's guide section on axes now shows how to edit properties of existing axes. The way to do it is the same as before:
正如@bigreddot所指出的,用户在轴上的指导部分现在展示了如何编辑现有轴的属性。做这件事的方法和以前一样:
p = figure(width=300, height=300, x_axis_label='Initial xlabel')
p.xaxis.axis_label = 'New xlabel'
Bokeh 0.11
It has been added to the documentation, although it still seems to be missing from the docs for figure
. You can set labels in a call to figure
, or you can set them on an existing figure (dead link, see update for 0.11.1 above). The following demonstrates both:
它已经添加到文档中,尽管文档中似乎仍然缺少数据。您可以在一个调用中设置标签,或者您可以将它们设置为一个现有的图形(死链接,参见上面的0.11.1更新)。以下展示了:
p = figure(width=300, height=300, x_axis_label='Initial xlabel')
p.xaxis.axis_label = 'New xlabel'
Bokeh 0.5.0
In Bokeh 0.5.0, you can also use x_axis_label and y_axis_label, as in this example. Use it like so:
在Bokeh 0.5.0中,您还可以使用x_axis_label和y_axis_label,如本例中所示。使用它就像这样:
from bokeh.plotting import figure
figure(title = "My figure",
x_axis_label = "Time",
y_axis_label = "Stock price")
They can also be used in the same manner in bokeh.plotting.circle()
. I believe, but have not tested it, that they work in the other plotting methods too.
在bokeh.plotting.circle()中也可以用同样的方式使用它们。我相信,但是没有测试过,他们也在其他的绘图方法中工作。
At any rate, this will be added to documentation soon. (See this issue).
无论如何,这将很快被添加到文档中。(见这个问题)。
#2
8
Check out this example: periodic table
看看这个例子:元素周期表。
You can also now give general plot related options (plot_width
, title
, etc.) to a call to figure(...)
instead of the renderer function (circle
, in that example)
现在,您还可以将一般的plot相关选项(plot_width, title,等等)提供给一个调用图(…),而不是renderer函数(在那个例子中是circle)
#3
1
I came up with this technique to change axis labels using CustomJS
:
我想出了这样一种技术,可以使用CustomJS来改变axis标签:
-
On your
fig = figure(...)
declaration, setx_axis_location
andy_axis_location
where you don't want the final axis to be. For example, If you wanted to have the x-axis on the bottom and y-axis on the left in the final figure, set the following:在您的图=图(…)声明中,设置x_axis_locationand y_axis_location,您不希望最终的轴是。例如,如果你想让x轴在底部,y轴在最后一个图形的左边,设置如下:
x_axis_location='above', y_axis_location='right'
-
Hide the original axes:
隐藏原始轴:
fig.xaxis.visible = None fig.yaxis.visible = None
-
Declare new axes and add them to the figure (i.e., add them to the opposite sides of the ones that you set in step 1):
声明新的坐标轴,并将其添加到图中。,把它们加到你在第1步中设置的另一边:
from bokeh.models import LinearAxis xaxis = LinearAxis(axis_label="Initial x-axis label") yaxis = LinearAxis(axis_label="Initial y-axis label") fig.add_layout(xaxis, 'below') fig.add_layout(yaxis, 'left')
-
Add the new axes to the arguments of
CustomJS
, where you can change theiraxis_label
s:将新的坐标轴添加到CustomJS的参数中,在这里可以更改它们的axis_label:
callback = CustomJS(args=dict(source=source, xaxis=xaxis, yaxis=yaxis), code=""" xaxis.attributes.axis_label = "New x-axis label"; yaxis.attributes.axis_label = "New y-axis label"; xaxis.trigger('change'); yaxis.trigger('change'); """)
#1
20
Bokeh 0.11.1
As @bigreddot kindly points out, the user's guide section on axes now shows how to edit properties of existing axes. The way to do it is the same as before:
正如@bigreddot所指出的,用户在轴上的指导部分现在展示了如何编辑现有轴的属性。做这件事的方法和以前一样:
p = figure(width=300, height=300, x_axis_label='Initial xlabel')
p.xaxis.axis_label = 'New xlabel'
Bokeh 0.11
It has been added to the documentation, although it still seems to be missing from the docs for figure
. You can set labels in a call to figure
, or you can set them on an existing figure (dead link, see update for 0.11.1 above). The following demonstrates both:
它已经添加到文档中,尽管文档中似乎仍然缺少数据。您可以在一个调用中设置标签,或者您可以将它们设置为一个现有的图形(死链接,参见上面的0.11.1更新)。以下展示了:
p = figure(width=300, height=300, x_axis_label='Initial xlabel')
p.xaxis.axis_label = 'New xlabel'
Bokeh 0.5.0
In Bokeh 0.5.0, you can also use x_axis_label and y_axis_label, as in this example. Use it like so:
在Bokeh 0.5.0中,您还可以使用x_axis_label和y_axis_label,如本例中所示。使用它就像这样:
from bokeh.plotting import figure
figure(title = "My figure",
x_axis_label = "Time",
y_axis_label = "Stock price")
They can also be used in the same manner in bokeh.plotting.circle()
. I believe, but have not tested it, that they work in the other plotting methods too.
在bokeh.plotting.circle()中也可以用同样的方式使用它们。我相信,但是没有测试过,他们也在其他的绘图方法中工作。
At any rate, this will be added to documentation soon. (See this issue).
无论如何,这将很快被添加到文档中。(见这个问题)。
#2
8
Check out this example: periodic table
看看这个例子:元素周期表。
You can also now give general plot related options (plot_width
, title
, etc.) to a call to figure(...)
instead of the renderer function (circle
, in that example)
现在,您还可以将一般的plot相关选项(plot_width, title,等等)提供给一个调用图(…),而不是renderer函数(在那个例子中是circle)
#3
1
I came up with this technique to change axis labels using CustomJS
:
我想出了这样一种技术,可以使用CustomJS来改变axis标签:
-
On your
fig = figure(...)
declaration, setx_axis_location
andy_axis_location
where you don't want the final axis to be. For example, If you wanted to have the x-axis on the bottom and y-axis on the left in the final figure, set the following:在您的图=图(…)声明中,设置x_axis_locationand y_axis_location,您不希望最终的轴是。例如,如果你想让x轴在底部,y轴在最后一个图形的左边,设置如下:
x_axis_location='above', y_axis_location='right'
-
Hide the original axes:
隐藏原始轴:
fig.xaxis.visible = None fig.yaxis.visible = None
-
Declare new axes and add them to the figure (i.e., add them to the opposite sides of the ones that you set in step 1):
声明新的坐标轴,并将其添加到图中。,把它们加到你在第1步中设置的另一边:
from bokeh.models import LinearAxis xaxis = LinearAxis(axis_label="Initial x-axis label") yaxis = LinearAxis(axis_label="Initial y-axis label") fig.add_layout(xaxis, 'below') fig.add_layout(yaxis, 'left')
-
Add the new axes to the arguments of
CustomJS
, where you can change theiraxis_label
s:将新的坐标轴添加到CustomJS的参数中,在这里可以更改它们的axis_label:
callback = CustomJS(args=dict(source=source, xaxis=xaxis, yaxis=yaxis), code=""" xaxis.attributes.axis_label = "New x-axis label"; yaxis.attributes.axis_label = "New y-axis label"; xaxis.trigger('change'); yaxis.trigger('change'); """)