地图矢量数据的边界简化算法之道格拉斯-普客算法

时间:2021-01-13 23:43:23

前些天做到了有关于需要简化行政边界的项目,起初用到的是ArcGIS中的概化工具与简化面工具,虽然极大地简化了行政边界,但是出现了很多重复区域与缝隙,进行拓扑修复复杂而漫长。所以只能另辟蹊径,在mapshaper.org上找到了很好的解决方案。所以,本人分三篇博客,对其用到的三种简化面算法做个简单的介绍。
首先介绍的是著名的道格拉斯-普客算法:
它的基本思路是:对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比:
若dmax<D,这条曲线上的中间点全部舍去;
若dmax≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。
地图矢量数据的边界简化算法之道格拉斯-普客算法
以下是以C#为例的算法实现代码:

/// <summary>
/// Uses the Douglas Peucker algorithm to reduce the number of points.
/// </summary>
/// <param name="Points">The points.</param>
/// <param name="Tolerance">The tolerance.</param>
/// <returns></returns>
public static List<Point> DouglasPeuckerReduction
(List<Point> Points, Double Tolerance)
{
if (Points == null || Points.Count < 3)
return Points;

Int32 firstPoint = 0;
Int32 lastPoint = Points.Count - 1;
List<Int32> pointIndexsToKeep = new List<Int32>();

//Add the first and last index to the keepers
pointIndexsToKeep.Add(firstPoint);
pointIndexsToKeep.Add(lastPoint);

//The first and the last point cannot be the same
while (Points[firstPoint].Equals(Points[lastPoint]))
{
lastPoint--;
}

DouglasPeuckerReduction(Points, firstPoint, lastPoint,
Tolerance, ref pointIndexsToKeep);

List<Point> returnPoints = new List<Point>();
pointIndexsToKeep.Sort();
foreach (Int32 index in pointIndexsToKeep)
{
returnPoints.Add(Points[index]);
}

return returnPoints;
}

/// <summary>
/// Douglases the peucker reduction.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="firstPoint">The first point.</param>
/// <param name="lastPoint">The last point.</param>
/// <param name="tolerance">The tolerance.</param>
/// <param name="pointIndexsToKeep">The point index to keep.</param>
private static void DouglasPeuckerReduction(List<Point>
points, Int32 firstPoint, Int32 lastPoint, Double tolerance,
ref List<Int32> pointIndexsToKeep)
{
Double maxDistance = 0;
Int32 indexFarthest = 0;

for (Int32 index = firstPoint; index < lastPoint; index++)
{
Double distance = PerpendicularDistance
(points[firstPoint], points[lastPoint], points[index]);
if (distance > maxDistance)
{
maxDistance = distance;
indexFarthest = index;
}
}

if (maxDistance > tolerance && indexFarthest != 0)
{
//Add the largest point that exceeds the tolerance
pointIndexsToKeep.Add(indexFarthest);

DouglasPeuckerReduction(points, firstPoint,
indexFarthest, tolerance, ref pointIndexsToKeep);
DouglasPeuckerReduction(points, indexFarthest,
lastPoint, tolerance, ref pointIndexsToKeep);
}
}

/// <summary>
/// The distance of a point from a line made from point1 and point2.
/// </summary>
/// <param name="pt1">The PT1.</param>
/// <param name="pt2">The PT2.</param>
/// <param name="p">The p.</param>
/// <returns></returns>
public static Double PerpendicularDistance
(Point Point1, Point Point2, Point Point)
{
//Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)| *Area of triangle
//Base = v((x1-x2)²+(x1-x2)²) *Base of Triangle*
//Area = .5*Base*H *Solve for height
//Height = Area/.5/Base

Double area = Math.Abs(.5 * (Point1.X * Point2.Y + Point2.X *
Point.Y + Point.X * Point1.Y - Point2.X * Point1.Y - Point.X *
Point2.Y - Point1.X * Point.Y));
Double bottom = Math.Sqrt(Math.Pow(Point1.X - Point2.X, 2) +
Math.Pow(Point1.Y - Point2.Y, 2));
Double height = area / bottom * 2;

return height;

//Another option
//Double A = Point.X - Point1.X;
//Double B = Point.Y - Point1.Y;
//Double C = Point2.X - Point1.X;
//Double D = Point2.Y - Point1.Y;

//Double dot = A * C + B * D;
//Double len_sq = C * C + D * D;
//Double param = dot / len_sq;

//Double xx, yy;

//if (param < 0)
//{
// xx = Point1.X;
// yy = Point1.Y;
//}
//else if (param > 1)
//{
// xx = Point2.X;
// yy = Point2.Y;
//}
//else
//{
// xx = Point1.X + param * C;
// yy = Point1.Y + param * D;
//}

//Double d = DistanceBetweenOn2DPlane(Point, new Point(xx, yy));
}