I am wanting to create a grid of plots with no intermediate space.
我想创建一个没有中间空间的图网格。
Which would look something like this:
大概是这样的:
Code 1
代码1
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
fig = plt.figure()
gs = GridSpec(2, 2, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
fig.show()
However when I add data the spacing between the sub-plots is dependent on dimensions of the figure. (Which can be seen by changing the dimensions of the window opened by fig.show().)
但是,当我添加数据时,子图之间的间隔依赖于图形的维数。(通过改变fig.show()打开的窗口的尺寸可以看出。)
As an example:
作为一个例子:
Code 2
代码2
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
fig = plt.figure()
gs = GridSpec(2, 2, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
for axis in [ax1, ax2, ax3, ax4]:
axis.imshow(np.random.random((10,10)))
fig.show()
So, preferably still using GridSpec, is it possible to force the plots to remain together?
The only other alternative I can think of is to access the size of the plots and use these dimensions in plt.figure(figsize=(##,##))
, but I can't seem to access the numbers.
所以,最好还是使用GridSpec,是否有可能强迫这些图保持在一起?我唯一能想到的另一种方法是访问这些图的大小,并在plt.figure中使用这些维度(figsize=(##,##)),但是我似乎无法访问这些数字。
Note: The number of plots will vary as well as hight/width ratios. (e.g. GridSpec(2, 3, width_ratios=[10,10,1], wspace=0.0, hspace=0.0)
where I would use the last column to hold the colour bar that is used for all the plots.)
注意:图的数量会随着高度/宽度比率的变化而变化。(例如,GridSpec(2, 3, width_比值=[10,10,1],wspace=0.0, hspace=0.0),在这里,我将使用最后一列来保存用于所有绘图的颜色栏。)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Python 2.7.10, Matplotlib 1.4.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Python 2.7.10 Matplotlib 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
3 个解决方案
#1
3
I have found two quick and dirty methods:
我发现了两种快速而肮脏的方法:
Method 1: Using figsize
Setting the figsize
keyword argument in plt.figure
with a width and height that matches the same aspect ratio as the data works reasonably well this little effort.
在plt中设置figsize关键字参数。图的宽度和高度匹配相同的宽高比,因为数据的工作相当不错。
由于方法1
Method 1
方法1
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
length_x_axis = 30
length_y_axis = 10
rows = 3
columns = 2
fig_height = 5.
height = length_y_axis * rows
width = length_x_axis * columns
plot_aspect_ratio= float(width)/float(height)
fig = plt.figure(figsize=(fig_height * plot_aspect_ratio, fig_height ))
gs = GridSpec(rows, columns, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
ax5 = fig.add_subplot(gs[2, 0])
ax6 = fig.add_subplot(gs[2, 1])
for axis in [ax1, ax2, ax3, ax4, ax5, ax6]:
axis.imshow(np.random.random((length_y_axis , length_x_axis )))
fig.savefig("testing.png")
Method 2: Using set_anchor
Using the set_anchor method for each axis gives a better result but it requires a bit more effort and from some quick tests it won't work for plot arrays greater than 3x2.
对于每个轴使用set_anchor方法可以得到更好的结果,但是这需要更多的努力,并且从一些快速测试中可以看出,对于大于3x2的绘图数组,它是不起作用的。
由于方法2
Method 2
方法2
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
fig = plt.figure()
gs = GridSpec(2, 3, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax1.set_anchor("SE")
ax2 = fig.add_subplot(gs[0, 1])
ax2.set_anchor("S")
ax3 = fig.add_subplot(gs[0, 2])
ax3.set_anchor("SW")
ax4 = fig.add_subplot(gs[1, 0])
ax4.set_anchor("NE")
ax5 = fig.add_subplot(gs[1, 1])
ax5.set_anchor("N")
ax6 = fig.add_subplot(gs[1, 2])
ax6.set_anchor("NW")
for axis in [ax1, ax2, ax3, ax4, ax5, ax6]:
axis.imshow(np.random.random((10 , 10 )))
fig.show()
#2
0
You could do a Nested GridSpec using SubplotSpec:
您可以使用SubplotSpec来执行嵌套的GridSpec:
The, above linked, matplotlib example code produces this:
上面链接的matplotlib示例代码生成以下代码:
Code, from here:
代码,从这里:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
try:
from itertools import product
except ImportError:
# product is new in v 2.6
def product(*args, **kwds):
pools = map(tuple, args) * kwds.get('repeat', 1)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig = plt.figure(figsize=(8, 8))
# gridspec inside gridspec
outer_grid = gridspec.GridSpec(4, 4, wspace=0.0, hspace=0.0)
for i in range(16):
inner_grid = gridspec.GridSpecFromSubplotSpec(3, 3,
subplot_spec=outer_grid[i], wspace=0.0, hspace=0.0)
a, b = int(i/4)+1,i%4+1
for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):
ax = plt.Subplot(fig, inner_grid[j])
ax.plot(*squiggle_xy(a, b, c, d))
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
all_axes = fig.get_axes()
#show only the outside spines
for ax in all_axes:
for sp in ax.spines.values():
sp.set_visible(False)
if ax.is_first_row():
ax.spines['top'].set_visible(True)
if ax.is_last_row():
ax.spines['bottom'].set_visible(True)
if ax.is_first_col():
ax.spines['left'].set_visible(True)
if ax.is_last_col():
ax.spines['right'].set_visible(True)
plt.show()
#3
0
As far as I can see, gridspec
does not override the default figsize
that you set up like this: plt.rcParams['figure.figsize'] = (16,8)
.
就我所见,gridspec并没有覆盖您设置的默认图形大小:pl . rcparams['图。figsize ')=(16日8)。
#1
3
I have found two quick and dirty methods:
我发现了两种快速而肮脏的方法:
Method 1: Using figsize
Setting the figsize
keyword argument in plt.figure
with a width and height that matches the same aspect ratio as the data works reasonably well this little effort.
在plt中设置figsize关键字参数。图的宽度和高度匹配相同的宽高比,因为数据的工作相当不错。
由于方法1
Method 1
方法1
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
length_x_axis = 30
length_y_axis = 10
rows = 3
columns = 2
fig_height = 5.
height = length_y_axis * rows
width = length_x_axis * columns
plot_aspect_ratio= float(width)/float(height)
fig = plt.figure(figsize=(fig_height * plot_aspect_ratio, fig_height ))
gs = GridSpec(rows, columns, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
ax5 = fig.add_subplot(gs[2, 0])
ax6 = fig.add_subplot(gs[2, 1])
for axis in [ax1, ax2, ax3, ax4, ax5, ax6]:
axis.imshow(np.random.random((length_y_axis , length_x_axis )))
fig.savefig("testing.png")
Method 2: Using set_anchor
Using the set_anchor method for each axis gives a better result but it requires a bit more effort and from some quick tests it won't work for plot arrays greater than 3x2.
对于每个轴使用set_anchor方法可以得到更好的结果,但是这需要更多的努力,并且从一些快速测试中可以看出,对于大于3x2的绘图数组,它是不起作用的。
由于方法2
Method 2
方法2
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
fig = plt.figure()
gs = GridSpec(2, 3, wspace=0.0, hspace=0.0)
ax1 = fig.add_subplot(gs[0, 0])
ax1.set_anchor("SE")
ax2 = fig.add_subplot(gs[0, 1])
ax2.set_anchor("S")
ax3 = fig.add_subplot(gs[0, 2])
ax3.set_anchor("SW")
ax4 = fig.add_subplot(gs[1, 0])
ax4.set_anchor("NE")
ax5 = fig.add_subplot(gs[1, 1])
ax5.set_anchor("N")
ax6 = fig.add_subplot(gs[1, 2])
ax6.set_anchor("NW")
for axis in [ax1, ax2, ax3, ax4, ax5, ax6]:
axis.imshow(np.random.random((10 , 10 )))
fig.show()
#2
0
You could do a Nested GridSpec using SubplotSpec:
您可以使用SubplotSpec来执行嵌套的GridSpec:
The, above linked, matplotlib example code produces this:
上面链接的matplotlib示例代码生成以下代码:
Code, from here:
代码,从这里:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
try:
from itertools import product
except ImportError:
# product is new in v 2.6
def product(*args, **kwds):
pools = map(tuple, args) * kwds.get('repeat', 1)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig = plt.figure(figsize=(8, 8))
# gridspec inside gridspec
outer_grid = gridspec.GridSpec(4, 4, wspace=0.0, hspace=0.0)
for i in range(16):
inner_grid = gridspec.GridSpecFromSubplotSpec(3, 3,
subplot_spec=outer_grid[i], wspace=0.0, hspace=0.0)
a, b = int(i/4)+1,i%4+1
for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):
ax = plt.Subplot(fig, inner_grid[j])
ax.plot(*squiggle_xy(a, b, c, d))
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
all_axes = fig.get_axes()
#show only the outside spines
for ax in all_axes:
for sp in ax.spines.values():
sp.set_visible(False)
if ax.is_first_row():
ax.spines['top'].set_visible(True)
if ax.is_last_row():
ax.spines['bottom'].set_visible(True)
if ax.is_first_col():
ax.spines['left'].set_visible(True)
if ax.is_last_col():
ax.spines['right'].set_visible(True)
plt.show()
#3
0
As far as I can see, gridspec
does not override the default figsize
that you set up like this: plt.rcParams['figure.figsize'] = (16,8)
.
就我所见,gridspec并没有覆盖您设置的默认图形大小:pl . rcparams['图。figsize ')=(16日8)。