使用SymPy Matrix查找根

时间:2021-12-16 23:40:50

Edit: I found a working solution, but I would still love more explanation to what's going on here:

编辑:我找到了一个有效的解决方案,但我仍然希望更多解释这里发生的事情:

from scipy import optimize
from sympy import lambdify, DeferredVector

v = DeferredVector('v')
f_expr = (v[0] ** 2 + v[1] ** 2)
f = lambdify(v, f_expr, 'numpy')

zero = optimize.root(f, x0=[0, 0], method='krylov')
zero

Original question:

原始问题:

Below we have Matrix M composed of expressions f1(x1, x2) and f2(x1, x2). I would like to know the values of x1 and x2 when M = [f1, f2] = [0, 0].

下面我们有矩阵M由表达式f1(x1,x2)和f2(x1,x2)组成。当M = [f1,f2] = [0,0]时,我想知道x1和x2的值。

The follow code is working, minus the root finding lines, which are commented out.

以下代码正在工作,减去根查找行,这些行被注释掉了。

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy import optimize
from sympy import init_printing, symbols, lambdify, Matrix
from sympy import pi, exp, cos, sin
x1, x2 = symbols('x1 x2')

# Expressions
f1_expr = sin(4 * pi * x1 * x2) - 2 * x2 - x1
f2_expr = ((4 * pi  - 1) / (4 * pi)) * (exp(2 * x1) - exp(1)) + 4 * exp(1) * (x2 ** 2) - 2 * exp(1) * x1

# Expressions -> NumPy function
f1 = lambdify((x1, x2), f1_expr, 'numpy')
f2 = lambdify((x1, x2), f2_expr, 'numpy')

# Matrix and it's Jacobian
M_expr = Matrix([f1_expr, f2_expr])
M_jacob_expr = M_expr.jacobian([x1, x2])

# Matrix -> NumPy function
M = lambdify((x1, x2), M_expr, [{'ImmutableMatrix': np.array}, "numpy"])
M_jacob = lambdify((x1, x2), M_jacob_expr, [{'ImmutableMatrix': np.array}, "numpy"])

# Data points
x1pts = np.arange(-2, 3, 0.01)
x2pts = np.arange(-3, 3, 0.01)
xx1pts, xx2pts = np.meshgrid(x1pts, x2pts)
# Solve matrix for two heat maps
z1, z2 = M(xx1pts, xx2pts)
z1 = z1.reshape(z1.shape[1], z1.shape[2])
z2 = z2.reshape(z2.shape[1], z2.shape[2])

# All of these commented lines throw errors.

# Find roots with SymPy
#zero1 = sp.mpmath.findroot(f1_expr, x0=(-0.3, 0.05))
#zeros = sp.mpmath.findroot(M_expr, x0=(-0.3, 0.05))

# Can I use NumPy somehow?
#zero2 = optimize.newton_krylov(f2, (-0.3, 0.05))
#zeros = optimize.newton_krylov(M, (-0.3, 0.05))

################
# Plotting below
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)

im1 = ax1.contourf(x1pts, x2pts, z1)
im2 = ax2.contourf(x1pts, x2pts, z2)

ax1.set_xlabel('x1')
ax1.set_ylabel('x2')
ax1.set_title('f1(x1, x2)')
ax2.set_xlabel('x1')
ax2.set_ylabel('x2')
ax2.set_title('f1(x1, x2)')
fig.colorbar(im1)
plt.tight_layout()
plt.show()
plt.close(fig)

使用SymPy Matrix查找根

1 个解决方案

#1


0  

This was breaking for a few reasons:

这有几个原因:

  1. scipy.optimize often insists that input functions contain only one argument. A wrapper avoids this, as is demonstrated here.

    scipy.optimize经常坚持输入函数只包含一个参数。如此处所示,包装器避免了这种情况。

  2. Some of the linear algebra functions in the SciPy pack state that the input parameters match the return value of the input function.

    SciPy包中的一些线性代数函数声明输入参数与输入函数的返回值匹配。

The following code is working:

以下代码正在运行:

import numpy as np
import pandas as pd
import sympy as sp
import matplotlib.pyplot as plt
from scipy import optimize
from sympy import init_printing, symbols, lambdify, Matrix, latex
from sympy import pi, exp, log, sqrt, sin, cos, tan, sinh, cosh, tanh
from sympy.abc import a, b, c, x, y, z, r, w
x1, x2 = symbols('x1 x2')

# Expressions
f1_expr = sin(4 * pi * x1 * x2) - 2 * x2 - x1
f2_expr = ((4 * pi  - 1) / (4 * pi)) * (exp(2 * x1) - exp(1)) + 4 * exp(1) * (x2 ** 2) - 2 * exp(1) * x1
f_expr = [f1_expr, f2_expr]

# Expressions -> NumPy function
f1 = lambdify((x1, x2), f1_expr, 'numpy')
f2 = lambdify((x1, x2), f2_expr, 'numpy')
f = np.array([f1, f2])

def _f(args):
    return [f1(args[0], args[1]), f2(args[0], args[1])]

# Matrix and it's Jacobian
M_expr = Matrix([f1_expr, f2_expr])
M_jacob_expr = M_expr.jacobian([x1, x2])

# Matrix -> NumPy function
M = lambdify((x1, x2), M_expr, [{'ImmutableMatrix': np.array}, "numpy"])
M_jacob = lambdify((x1, x2), M_jacob_expr, [{'ImmutableMatrix': np.array}, "numpy"])

# Data points
x1pts = np.arange(-2, 3, 0.01)
x2pts = np.arange(-2, 3, 0.01)
xx1pts, xx2pts = np.meshgrid(x1pts, x2pts)
# Solved over ranges for plots
z1, z2 = M(xx1pts, xx2pts)
z1 = z1.reshape(z1.shape[1], z1.shape[2])
z2 = z2.reshape(z2.shape[1], z2.shape[2])

# Find roots
results = optimize.root(_f, x0=[-0.3, 0.05], method='Krylov')
zeros = results.get('x')
# First figure
fig, ax = plt.subplots(1)

im = ax.contourf(x1pts, x2pts, z1)
ax.scatter(zeros[0], zeros[1], linewidth=5, color='k')

ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_title('f1(x1, x2)')
plt.colorbar(im)
plt.tight_layout()
plt.set_cmap('seismic')
fig.savefig('img30_1.png')
plt.show()
plt.close(fig)

# Second figure
fig, ax = plt.subplots(1)

im = ax.contourf(x1pts, x2pts, z2)
ax.scatter(zeros[0], zeros[1], linewidth=5, color='white')

ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_title('f2(x1, x2)')
plt.colorbar(im)
plt.tight_layout()
plt.set_cmap('seismic')
fig.savefig('img30_2.png')
plt.show()
plt.close(fig)

使用SymPy Matrix查找根

使用SymPy Matrix查找根

#1


0  

This was breaking for a few reasons:

这有几个原因:

  1. scipy.optimize often insists that input functions contain only one argument. A wrapper avoids this, as is demonstrated here.

    scipy.optimize经常坚持输入函数只包含一个参数。如此处所示,包装器避免了这种情况。

  2. Some of the linear algebra functions in the SciPy pack state that the input parameters match the return value of the input function.

    SciPy包中的一些线性代数函数声明输入参数与输入函数的返回值匹配。

The following code is working:

以下代码正在运行:

import numpy as np
import pandas as pd
import sympy as sp
import matplotlib.pyplot as plt
from scipy import optimize
from sympy import init_printing, symbols, lambdify, Matrix, latex
from sympy import pi, exp, log, sqrt, sin, cos, tan, sinh, cosh, tanh
from sympy.abc import a, b, c, x, y, z, r, w
x1, x2 = symbols('x1 x2')

# Expressions
f1_expr = sin(4 * pi * x1 * x2) - 2 * x2 - x1
f2_expr = ((4 * pi  - 1) / (4 * pi)) * (exp(2 * x1) - exp(1)) + 4 * exp(1) * (x2 ** 2) - 2 * exp(1) * x1
f_expr = [f1_expr, f2_expr]

# Expressions -> NumPy function
f1 = lambdify((x1, x2), f1_expr, 'numpy')
f2 = lambdify((x1, x2), f2_expr, 'numpy')
f = np.array([f1, f2])

def _f(args):
    return [f1(args[0], args[1]), f2(args[0], args[1])]

# Matrix and it's Jacobian
M_expr = Matrix([f1_expr, f2_expr])
M_jacob_expr = M_expr.jacobian([x1, x2])

# Matrix -> NumPy function
M = lambdify((x1, x2), M_expr, [{'ImmutableMatrix': np.array}, "numpy"])
M_jacob = lambdify((x1, x2), M_jacob_expr, [{'ImmutableMatrix': np.array}, "numpy"])

# Data points
x1pts = np.arange(-2, 3, 0.01)
x2pts = np.arange(-2, 3, 0.01)
xx1pts, xx2pts = np.meshgrid(x1pts, x2pts)
# Solved over ranges for plots
z1, z2 = M(xx1pts, xx2pts)
z1 = z1.reshape(z1.shape[1], z1.shape[2])
z2 = z2.reshape(z2.shape[1], z2.shape[2])

# Find roots
results = optimize.root(_f, x0=[-0.3, 0.05], method='Krylov')
zeros = results.get('x')
# First figure
fig, ax = plt.subplots(1)

im = ax.contourf(x1pts, x2pts, z1)
ax.scatter(zeros[0], zeros[1], linewidth=5, color='k')

ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_title('f1(x1, x2)')
plt.colorbar(im)
plt.tight_layout()
plt.set_cmap('seismic')
fig.savefig('img30_1.png')
plt.show()
plt.close(fig)

# Second figure
fig, ax = plt.subplots(1)

im = ax.contourf(x1pts, x2pts, z2)
ax.scatter(zeros[0], zeros[1], linewidth=5, color='white')

ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_title('f2(x1, x2)')
plt.colorbar(im)
plt.tight_layout()
plt.set_cmap('seismic')
fig.savefig('img30_2.png')
plt.show()
plt.close(fig)

使用SymPy Matrix查找根

使用SymPy Matrix查找根