异步FIFO及verilog原码_2

时间:2020-11-29 23:35:52

两篇文章的原码

//----------------------STYLE #1--------------------------

module fifo1(rdata, wfull, rempty, wdata, winc, wclk, wrst_n,rinc, rclk, rrst_n);
parameter DSIZE = 8;
parameter ASIZE = 4;

output [DSIZE-1:0] rdata;
output wfull;
output rempty;
input [DSIZE-1:0] wdata;
input winc, wclk, wrst_n;
input rinc, rclk, rrst_n;

reg wfull,rempty;
reg [ASIZE:0] wptr, rptr, wq2_rptr, rq2_wptr, wq1_rptr,rq1_wptr;
reg [ASIZE:0] rbin, wbin;
reg [DSIZE-1:0] mem[0:(1<<ASIZE)-1];
wire [ASIZE-1:0] waddr, raddr;
wire [ASIZE:0] rgraynext, rbinnext,wgraynext,wbinnext;
wire rempty_val,wfull_val;
//-----------------双口RAM存储器--------------------
assign rdata="mem"[raddr];
always@(posedge wclk)
if (winc && !wfull) mem[waddr] <= wdata;
//-------------同步rptr 指针-------------------------
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wq2_rptr,wq1_rptr} <= 0;
else {wq2_rptr,wq1_rptr} <= {wq1_rptr,rptr};
//-------------同步wptr指针---------------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rq2_wptr,rq1_wptr} <= 0;
else {rq2_wptr,rq1_wptr} <= {rq1_wptr,wptr};
//-------------rempty产生与raddr产生-------------------
//-------------------
// GRAYSTYLE2 pointer
//-------------------
always @(posedge rclk or negedge rrst_n)
begin
if (!rrst_n) {rbin, rptr} <= 0;
else {rbin, rptr} <= {rbinnext, rgraynext};
end
// Memory read-address pointer (okay to use binary to address memory)
assign raddr = rbin[ASIZE-1:0];
assign rbinnext = rbin + (rinc & ~rempty);
assign rgraynext = (rbinnext>>1) ^ rbinnext;
//---------------------------------------------------------------
// FIFO empty when the next rptr == synchronized wptr or on reset
//---------------------------------------------------------------
assign rempty_val = (rgraynext == rq2_wptr);
always @(posedge rclk or negedge rrst_n)
begin
if (!rrst_n) rempty <= 1'b1;
else rempty <= rempty_val;
end
//---------------wfull产生与waddr产生------------------------------
// GRAYSTYLE2 pointer

always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wbin, wptr} <= 0;
else {wbin, wptr} <= {wbinnext, wgraynext};

// Memory write-address pointer (okay to use binary to address memory)
assign waddr = wbin[ASIZE-1:0];
assign wbinnext = wbin + (winc & ~wfull);
assign wgraynext = (wbinnext>>1) ^ wbinnext;
//------------------------------------------------------------------
// Simplified version of the three necessary full-tests:
// assign wfull_val=((wgnext[ADDRSIZE] !=wq2_rptr[ADDRSIZE] ) &&
// (wgnext[ADDRSIZE-1] !=wq2_rptr[ADDRSIZE-1]) &&
// (wgnext[ADDRSIZE-2:0]==wq2_rptr[ADDRSIZE-2:0]));
//------------------------------------------------------------------
assign wfull_val = (wgraynext=={~wq2_rptr[ASIZE:ASIZE-1],
wq2_rptr[ASIZE-2:0]});

always @(posedge wclk or negedge wrst_n)
if (!wrst_n) wfull <= 1'b0;
else wfull <= wfull_val;
endmodule


//---------------------STYLE #2-------------------------

module fifo2 (rdata, wfull, rempty, wdata,
winc, wclk, wrst_n, rinc, rclk, rrst_n);
parameter DSIZE = 8;
parameter ASIZE = 4;
output [DSIZE-1:0] rdata;
output wfull;
output rempty;
input [DSIZE-1:0] wdata;
input winc, wclk, wrst_n;
input rinc, rclk, rrst_n;
wire [ASIZE-1:0] wptr, rptr;
wire [ASIZE-1:0] waddr, raddr;

async_cmp #(ASIZE) async_cmp(.aempty_n(aempty_n),
.afull_n(afull_n),
.wptr(wptr), .rptr(rptr),
.wrst_n(wrst_n));

fifomem2 #(DSIZE, ASIZE) fifomem2(.rdata(rdata),
.wdata(wdata),
.waddr(wptr),
.raddr(rptr),
.wclken(winc),
.wclk(wclk));

rptr_empty2 #(ASIZE) rptr_empty2(.rempty(rempty),
.rptr(rptr),
.aempty_n(aempty_n),
.rinc(rinc),
.rclk(rclk),
.rrst_n(rrst_n));

wptr_full2 #(ASIZE) wptr_full2(.wfull(wfull),
.wptr(wptr),
.afull_n(afull_n),
.winc(winc),
.wclk(wclk),
.wrst_n(wrst_n));
endmodule
module fifomem2 (rdata, wdata, waddr, raddr, wclken, wclk);
parameter DATASIZE = 8; // Memory data word width
parameter ADDRSIZE = 4; // Number of memory address bits
parameter DEPTH = 1<<ADDRSIZE; // DEPTH = 2**ADDRSIZE
output [DATASIZE-1:0] rdata;
input [DATASIZE-1:0] wdata;
input [ADDRSIZE-1:0] waddr, raddr;
input wclken, wclk;
`ifdef VENDORRAM
// instantiation of a vendor's dual-port RAM
VENDOR_RAM MEM (.dout(rdata), .din(wdata),
.waddr(waddr), .raddr(raddr),
.wclken(wclken), .clk(wclk));
`else
reg [DATASIZE-1:0] MEM [0:DEPTH-1];
assign rdata = MEM[raddr];
always @(posedge wclk)
if (wclken) MEM[waddr] <= wdata;
`endif
endmodule
module 异步_cmp (aempty_n, afull_n, wptr, rptr, wrst_n);


parameter ADDRSIZE = 4;
parameter N = ADDRSIZE-1;
output aempty_n, afull_n;
input [N:0] wptr, rptr;
input wrst_n;
reg direction;
wire high = 1'b1;
wire dirset_n = ~( (wptr[N]^rptr[N-1]) & ~(wptr[N-1]^rptr[N]));
wire dirclr_n = ~((~(wptr[N]^rptr[N-1]) & (wptr[N-1]^rptr[N])) |
~wrst_n);
always @(posedge high or negedge dirset_n or negedge dirclr_n)
if (!dirclr_n) direction <= 1'b0;
else if (!dirset_n) direction <= 1'b1;
else direction <= high;
//always @(negedge dirset_n or negedge dirclr_n)
//if (!dirclr_n) direction <= 1'b0;
//else direction <= 1'b1;
assign aempty_n = ~((wptr == rptr) && !direction);
assign afull_n = ~((wptr == rptr) && direction);
endmodule

module rptr_empty2 (rempty, rptr, aempty_n, rinc, rclk, rrst_n);
parameter ADDRSIZE = 4;
output rempty;
output [ADDRSIZE-1:0] rptr;
input aempty_n;
input rinc, rclk, rrst_n;
reg [ADDRSIZE-1:0] rptr, rbin;
reg rempty, rempty2;
wire [ADDRSIZE-1:0] rgnext, rbnext;
//---------------------------------------------------------------
// GRAYSTYLE2 pointer
//---------------------------------------------------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) begin
rbin <= 0;
rptr <= 0;
end
else begin
rbin <= rbnext;
rptr <= rgnext;
end
//---------------------------------------------------------------
// increment the binary count if not empty
//---------------------------------------------------------------
assign rbnext = !rempty ? rbin + rinc : rbin;
assign rgnext = (rbnext>>1) ^ rbnext; // binary-to-gray conversion
always @(posedge rclk or negedge aempty_n)
if (!aempty_n) {rempty,rempty2} <= 2'b11;
else {rempty,rempty2} <= {rempty2,~aempty_n};
endmodule

module wptr_full2 (wfull, wptr, afull_n, winc, wclk, wrst_n);
parameter ADDRSIZE = 4;
output wfull;
output [ADDRSIZE-1:0] wptr;
input afull_n;
input winc, wclk, wrst_n;
reg [ADDRSIZE-1:0] wptr, wbin;
reg wfull, wfull2;
wire [ADDRSIZE-1:0] wgnext, wbnext;
//---------------------------------------------------------------
// GRAYSTYLE2 pointer
//---------------------------------------------------------------
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) begin
wbin <= 0;
wptr <= 0;
end
else begin
wbin <= wbnext;
wptr <= wgnext;
end
//---------------------------------------------------------------
// increment the binary count if not full
//---------------------------------------------------------------
assign wbnext = !wfull ? wbin + winc : wbin;
assign wgnext = (wbnext>>1) ^ wbnext; // binary-to-gray conversion
always @(posedge wclk or negedge wrst_n or negedge afull_n)
if (!wrst_n ) {wfull,wfull2} <= 2'b00;
else if (!afull_n) {wfull,wfull2} <= 2'b11;
else {wfull,wfull2} <= {wfull2,~afull_n};
endmodule


细心的读者会发现,第一种写法(本人做的修改)把所有信号写在同一个module里,而第二种写法则分了很多模块。哪种写法更好呢?有兴趣的可以想一想,事实上,第二种写法是推荐的写法:原因如下:

异步的多时钟设计应按以下几个原则进行设计:

1,尽可能的将多时钟的逻辑电路(非同步器)分割为多个单时钟的模块,这样有利于静态时序分析工具来进行时序验证。

2,同步器的实现应使得所有输入来自同一个时钟域,而使用另一个时钟域的异步时钟信号采样数据。

3,面向时钟信号的命名方式可以帮助我们确定那些在不同异步时钟域间需要处理的信号。

4,当存在多个跨时钟域的控制信号时,我们必须特别注意这些信号,保证这些控制信号到达新的时钟域仍然能够保持正确的顺序。