Problem Description
老师在计算几何这门课上给Eddy布置了一道题目,题目是这样的:给定二维的平面上n个不同的点,要求在这些点里寻找三个点,使他们构成的三角形拥有的面积最大。
Eddy对这道题目百思不得其解,想不通用什么方法来解决,因此他找到了聪明的你,请你帮他解决这个题目。
Eddy对这道题目百思不得其解,想不通用什么方法来解决,因此他找到了聪明的你,请你帮他解决这个题目。
Input
输入数据包含多组测试用例,每个测试用例的第一行包含一个整数n,表示一共有n个互不相同的点,接下来的n行每行包含2个整数xi,yi,表示平面上第i个点的x与y坐标。你可以认为:3 <= n <= 50000 而且 -10000 <= xi, yi <= 10000.
Output
对于每一组测试数据,请输出构成的最大的三角形的面积,结果保留两位小数。
每组输出占一行。
每组输出占一行。
Sample
Sample Input Sample Output
1.50
27.00
题意:
求最大的三角形面积。
思路:
做出凸包,遍历即可,主要是旋转卡壳不会用,恰好后台数据没有那么大N^3没有T。三角形面积可以用两向量叉乘/2求出。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define PI 3.1415926535
using namespace std;
struct node
{
int x,y;
};
node vex[];//存入的所有的点
node stackk[];//凸包中所有的点
int xx,yy;
bool cmp1(node a,node b)
{
if(a.y==b.y)
return a.x<b.x;
else
return a.y<b.y;
}
double cross(node a,node b,node c)//计算叉积
{
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
double dis(node a,node b)//计算距离
{
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
bool cmp2(node a,node b)//极角排序另一种方法,速度快
{
if(atan2(a.y-yy,a.x-xx)!=atan2(b.y-yy,b.x-xx))
return (atan2(a.y-yy,a.x-xx))<(atan2(b.y-yy,b.x-xx));
return a.x<b.x;
}
bool cmp(node a,node b)//极角排序
{
int m=cross(vex[],a,b);
if(m>)
return ;
else if(m==&&dis(vex[],a)-dis(vex[],b)<=)
return ;
else return ;
/*if(m==0)
return dis(vex[0],a)-dis(vex[0],b)<=0?true:false;
else
return m>0?true:false;*/
}
int main()
{
int t,L;
while(~scanf("%d",&t))
{
int i;
for(i=; i<t; i++)
{
scanf("%d%d",&vex[i].x,&vex[i].y);
}
memset(stackk,,sizeof(stackk));
sort(vex,vex+t,cmp1);
stackk[]=vex[];
xx=stackk[].x;
yy=stackk[].y;
sort(vex+,vex+t,cmp2);
stackk[]=vex[];//将凸包中的前两个点存入凸包的结构体中
int top=;//最后凸包中拥有点的个数*/
for(i=; i<t; i++)
{
while(i>=&&cross(stackk[top-],stackk[top],vex[i])<)
top--;
stackk[++top]=vex[i];
}
double s=;//三角形的面积可以由向量叉乘/2
for(int i = ; i<=top; i++)
for(int j = i+; j<=top; j++)
for(int k = j+; k<=top; k++)
s = max(s,cross(stackk[i],stackk[j],stackk[k]));
printf("%.2lf\n",s/2.0); }
}