数据结构——二叉查找树、AVL树

时间:2022-01-14 23:06:36

二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列!

数据结构——二叉查找树、AVL树

插入:直接插入,插入后一定为根节点

查找:直接查找

删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父节点即可,有两个孩子的节点,将左儿子最右边节点(或右儿子最左边节点)替换到根节点即可。

AVL树(二叉平衡查找树)

定义:节点的平衡度(左子树的高度 - 右子树的高度)只能为-1、0、1的二叉查找树。

数据结构——二叉查找树、AVL树

创建:需要一个变量记录每个节点的平衡度

查找:直接查找

插入:LL、LR、RL、RR过程

删除:分情况讨论

AVL树的Java实现:

package com.tonyluis;

/**
* AVL树
*
* @author TonyLuis 2016.07.27
* @param <T>
*/
public class AVLTree<T extends Comparable<T>> {
private AVLNode<T> root; @SuppressWarnings("hiding")
class AVLNode<T> {
T val;
AVLNode<T> left;
AVLNode<T> right;
int height; AVLNode(T val, AVLNode<T> left, AVLNode<T> right) {
this.val = val;
this.left = left;
this.right = right;
this.height = 0;
}
} public void insert(T num) {
root = insert(num, root);
} public void remove(T num) {
remove(num, root);
} public boolean find(T num) {
AVLNode<T> t = this.root;
while (t != null && num.compareTo(t.val) != 0)
t = num.compareTo(t.val) > 0 ? t.right : t.left;
if (t == null)
return false;
else
return true;
} private int height(AVLNode<T> node) {
return node == null ? -1 : node.height;
} private AVLNode<T> insert(T num, AVLNode<T> root) {
// root==null 找到了插入的位置
if (root == null)
return new AVLNode<T>(num, null, null); int compareResult = num.compareTo(root.val);
if (compareResult < 0) {// 插入左子树
root.left = insert(num, root.left);
if (height(root.left) - height(root.right) == 2) {
if (num.compareTo(root.left.val) < 0)
root = LL(root);
else
root = LR(root);
}
} else if (compareResult > 0) {
root.right = insert(num, root.right);
if (height(root.right) - height(root.left) == 2) {
if (num.compareTo(root.right.val) < 0)
root = RL(root);
else
root = RR(root);
}
}
root.height = Math.max(height(root.left), height(root.right)) + 1;
return root;
} public boolean remove(T num, AVLNode<T> root) {
boolean isStop = false;
boolean isLeftSubTree;
if (root == null)
return true;
int compareResult = num.compareTo(root.val);
if (compareResult < 0) {
isStop = remove(num, root.left);
isLeftSubTree = true;
} else if (compareResult > 0) {
isStop = remove(num, root.right);
isLeftSubTree = false;
} else if (root.left == null || root.right == null) {
root = root.left == null ? root.right : root.left;
return false;
} else {// 找到且有两个子树,将其和右子树最左边节点交换,然后在右子树执行删除操作
AVLNode<T> tmp = root.right;
while (tmp.left != null)
tmp = tmp.left;
root.val = tmp.val;
isStop = remove(root.val, root.right);
isLeftSubTree = false;
}
if (isStop)
return true;
int bf;// 删除前的root的平衡因子
if (isLeftSubTree) {
bf = height(root.left) - height(root.right) + 1;
if (bf == 0)
return true;
else if (bf == 1)
return false;
else if (bf == -1) {
int bfr = height(root.right.left) - height(root.right.left);
switch (bfr) {
case 0:
RR(root);
return true;
case -1:
RR(root);
return false;
default:
RL(root);
return false;
}
}
} else {
bf = height(root.left) - height(root.right) - 1;
if (bf == 0)
return true;
else if (bf == -1)
return false;
else if (bf == 1) {
int bfr = height(root.right.left) - height(root.right.left);
switch (bfr) {
case 0:
LL(root);
return true;
case 1:
LL(root);
return false;
default:
LR(root);
return false;
}
}
}
return false;
} private AVLNode<T> LL(AVLNode<T> node) {
AVLNode<T> nodeLeft = node.left;
node.left = nodeLeft.right;
nodeLeft.right = node;
node.height = Math.max(height(node.left), height(node.right)) + 1;
nodeLeft.height = Math.max(height(nodeLeft.left), node.height) + 1;
return nodeLeft;
} private AVLNode<T> RR(AVLNode<T> node) {
AVLNode<T> nodeRight = node.right;
node.right = nodeRight.left;
nodeRight.left = node;
node.height = Math.max(height(node.left), height(node.right)) + 1;
nodeRight.height = Math.max(height(nodeRight.right), node.height) + 1;
return nodeRight;
} private AVLNode<T> LR(AVLNode<T> node) {
node.left = RR(node.left);
return LL(node);
} private AVLNode<T> RL(AVLNode<T> node) {
node.right = LL(node.right);
return RR(node);
} }