Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

时间:2021-09-16 23:08:02

背景:

需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新broadcast的用法,于是就这几天进行了反复测试。经过了一下两个测试::Spark Streaming更新broadcast、Spark Structured Streaming更新broadcast。

1)Spark Streaming更新broadcast(可行)

  def sparkStreaming(): Unit = {
// Create a local StreamingContext with two working thread and batch interval of 1 second.
// The master requires 2 cores to prevent a starvation scenario.
val conf = new SparkConf().setMaster("local[*]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(15)) // Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(ipAddr, 19999)
val mro = lines.map(row => {
val fields = row.split(",")
Mro(fields(0), fields(1))
}) val cellJoinMro = mro.transform(row => {
if (1 < 3) {
println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date()))
BroadcastWrapper.update(ssc.sparkContext)
}
var broadcastCellRes = BroadcastWrapper.getInstance(ssc.sparkContext)
row.map(row => {
val int_id: String = row.int_id
val rsrp: String = row.rsrp
val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get)
val timeStamps: String = String.join(",", findResult) CellJoinMro(int_id, rsrp, timeStamps)
})
}) cellJoinMro.print() ssc.start() // Start the computation
ssc.awaitTermination() // Wait for the computation to terminate
}
import org.apache.spark.SparkContext
import org.apache.spark.broadcast.Broadcast object BroadcastWrapper {
@volatile private var instance: Broadcast[Map[String, java.util.List[String]]] = null
private val baseDir = "/user/my/streaming/test/" def loadData(): Map[String, java.util.List[String]] = {
val files = HdfsUtil.getFiles(baseDir) var latest: String = null
for (key <- files.keySet) {
if (latest == null) latest = key
else if (latest.compareTo(key) <= 0) latest = key
} val filePath = baseDir + latest val map = HdfsUtil.getFileContent(filePath)
map
} def update(sc: SparkContext, blocking: Boolean = false): Unit = {
if (instance != null)
instance.unpersist(blocking)
instance = sc.broadcast(loadData())
} def getInstance(sc: SparkContext): Broadcast[Map[String, java.util.List[String]]] = {
if (instance == null) {
synchronized {
if (instance == null) {
instance = sc.broadcast(loadData)
}
}
}
instance
} } import java.io.{BufferedReader, InputStreamReader}
import java.text.SimpleDateFormat
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.fs.FileSystem
import scala.collection.mutable object HdfsUtil {
private val sdf = new SimpleDateFormat("yyyy-MM-dd 00:00:00") def getFiles(path: String): mutable.Map[String, String] = {
val fileItems = new mutable.LinkedHashMap[String, String]
val fs = FileSystem.get(new Configuration())
val files = fs.listStatus(new Path(path))
var pathStr: String = ""
for (file <- files) {
if (file.isFile) {
pathStr = file.getPath().getName()
fileItems.put(pathStr.split("/")(pathStr.split("/").length - 1), pathStr)
}
} fs.close() fileItems
} def getFileContent(filePath: String): Map[String, java.util.List[String]] = {
val map = new mutable.LinkedHashMap[String, java.util.List[String]] val fs = FileSystem.get(new Configuration())
val path = new Path(filePath)
if (fs.exists(path)) {
val bufferedReader = new BufferedReader(new InputStreamReader(fs.open(path)))
var line: String = null
line = bufferedReader.readLine()
while (line != null) { val fields: Array[String] = line.split(",")
val int_id: String = fields(0)
val date = new java.util.Date(java.lang.Long.valueOf(fields(2)))
val time = sdf.format(date)
System.out.println(line + "(" + time + ")") if (!map.keySet.contains(int_id))
map.put(int_id, new java.util.ArrayList[String])
map.get(int_id).get.add(time) line = bufferedReader.readLine()
} map.toMap
} else {
throw new RuntimeException("the file do not exists")
}
}
}

测试日志:

18/11/19 16:50:15 INFO scheduler.DAGScheduler: Job 2 finished: print at App.scala:59, took 0.080061 s
-------------------------------------------
Time: 1542617415000 ms
-------------------------------------------
CellJoinMro(2,333,2018-11-05 00:00:00)
。。。。
18/11/19 16:50:15 INFO storage.BlockManagerInfo: Removed input-0-1542617392400 on 10.60.0.11:1337 in memory (size: 12.0 B, free: 456.1 MB)
》》》》》》》》》》》》》》》》此时路径上传新资源文件》》》》》》》》》》》》》》》》》》》》》》
更新broadcast...2018-11-19 16:50:30
。。。
1,111,1541433600000(2018-11-06 00:00:00)
2,222,1541433600000(2018-11-06 00:00:00)
3,333,1541433600000(2018-11-06 00:00:00)
18/11/19 16:50:30 INFO memory.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 688.0 B, free 456.1 MB)
。。
18/11/19 16:50:30 INFO scheduler.JobScheduler: Starting job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms
-------------------------------------------
Time: 1542617430000 ms
------------------------------------------- 18/11/19 16:50:30 INFO scheduler.JobScheduler: Finished job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms
。。。。
18/11/19 16:50:32 WARN storage.BlockManager: Block input-0-1542617432400 replicated to only 0 peer(s) instead of 1 peers
18/11/19 16:50:32 INFO receiver.BlockGenerator: Pushed block input-0-1542617432400
更新broadcast...2018-11-19 16:50:45
1,111,1541433600000(2018-11-06 00:00:00)
2,222,1541433600000(2018-11-06 00:00:00)
3,333,1541433600000(2018-11-06 00:00:00)
18/11/19 16:50:45 INFO memory.MemoryStore: Block broadcast_6 stored as values in memory (estimated size 688.0 B, free 456.1 MB)
。。。。
18/11/19 16:50:45 INFO scheduler.DAGScheduler: Job 3 finished: print at App.scala:59, took 0.066975 s
-------------------------------------------
Time: 1542617445000 ms
-------------------------------------------
CellJoinMro(3,4444,2018-11-06 00:00:00) 18/11/19 16:50:45 INFO scheduler.JobScheduler: Finished job streaming job 1542617445000 ms.0 from job set of time 1542617445000 ms
18/11/19 16:50:45 INFO scheduler.JobScheduler: Total delay: 0.367 s for time 1542617445000 ms (execution: 0.083 s)
18/11/19 16:50:45 INFO rdd.MapPartitionsRDD: Removing RDD 9 from persistence list

日志分析:

每个batch都执行transform中的更新broadcast代码,而且也执行了broadcast获取代码。因此,每次都可进行更新broadcast内容,并且获取到broadcast中的内容。

2)Spark Structured Streaming更新broadcast(不可行【可行】)

目前测试可行请参考《Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)

 def sparkStructuredStreaming(): Unit = {
val spark = SparkSession.builder.appName("Test_Broadcast_ByScala_App").getOrCreate()
spark.streams.addListener(new StreamingQueryListener {
override def onQueryStarted(event: StreamingQueryListener.QueryStartedEvent): Unit = {
println("*************** onQueryStarted ***************")
} override def onQueryProgress(event: StreamingQueryListener.QueryProgressEvent): Unit = {
println("*************** onQueryProgress ***************")
// 这段代码可以把broadcast对象更新成功,但是spark structured streaming内部读取到的broadcast对象数据依然是老数据。
// BroadcastWrapper.update(spark.sparkContext, true)
println("*************** onQueryProgress update broadcast " + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date())) } override def onQueryTerminated(event: StreamingQueryListener.QueryTerminatedEvent): Unit = {
println("*************** onQueryTerminated ***************")
}
})
// Create DataFrame representing the stream of input lines from connection to localhost:9999
val lines = spark.readStream.format("socket").option("host", ipAddr).option("port", 19999).load() import spark.implicits._
val mro = lines.as(Encoders.STRING).map(row => {
val fields = row.split(",")
Mro(fields(0), fields(1))
}) val cellJoinMro = mro.transform(row => {
// 这段代码在第一次触发时执行,之后触发就不再执行。
println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date()))
if (1 < 3) {
println("------------------------1111-----------------------------")
BroadcastWrapper.update(spark.sparkContext)
}
var broadcastCellRes = BroadcastWrapper.getInstance(spark.sparkContext)
row.map(row => {
val int_id: String = row.int_id
val rsrp: String = row.rsrp
val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get)
val timeStamps: String = String.join(",", findResult) CellJoinMro(int_id, rsrp, timeStamps)
})
}) val query = cellJoinMro.writeStream.format("console")
.outputMode("update")
.trigger(Trigger.ProcessingTime(15, TimeUnit.SECONDS))
.start() query.awaitTermination()
}

执行日志:

// :: INFO state.StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
// :: WARN streaming.TextSocketSourceProvider: The socket source should not be used for production applications! It does not support recovery.
更新broadcast...-- ::
-----------------------------------------------------
,,(-- ::)
,,(-- ::)
,,(-- ::)
.....
-------------------------------------------
Batch:
-------------------------------------------
// :: INFO codegen.CodeGenerator: Code generated in 82.760622 ms
。。。。
// :: INFO scheduler.DAGScheduler: Job finished: start at App.scala:, took 4.215709 s
+------+----+-------------------+
|int_id|rsrp| timestamp|
+------+----+-------------------+
| | |-- ::|
+------+----+-------------------+ // :: INFO streaming.StreamExecution: Committed offsets for batch . Metadata OffsetSeqMetadata(,,Map(spark.sql.shuffle.partitions -> )) 此时更新资源文件,附加2018-11-06的资源文件。
-------------------------------------------
Batch:
-------------------------------------------
// :: INFO spark.SparkContext: Starting job: start at App.scala:
。。。
// :: INFO scheduler.DAGScheduler: Job finished: start at App.scala:, took 3.068106 s
+------+----+-------------------+
|int_id|rsrp| timestamp|
+------+----+-------------------+
| | |-- ::|
+------+----+-------------------+

日志分析:

Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

测试结论:

Spark Streaming更新broadcast(可行)、Spark Structured Streaming更新broadcast(不可行,也可行,如果按照上边spark streaming的方法是不行的,但是有其他方案),原因Spark Streaming的执行引擎是Spark Engine,是代码执行,在算子的构造函数中可以访问SparkContext,SparkSession,而且这些类构造函数是可以每次都执行的。

而Spark Structured Streaming的执行引擎是Spark Sql Engine,是把代码优化为Spark Sql Engine希望的格式去执行,不可以在每次trigger事件触发都执行执行块以外的代码,因此这些类构造函数块代码只能执行一次,执行块类似MapFunction的call()函数内,不允许访问SparkContext,SparkSession对象,因此无处进行每次trigger都进行broadcast更新。

那么,如何在Spark Struectured Streaming中实现更新broadcast的方案,升级spark版本,从spark2.3.0开始,spark structured streaming支持了stream join stream(请参考《Spark2.3(三十七):Stream join Stream(res文件每天更新一份)》)。

实际上,@2019-03-27测试结果中可以得到新的方案,也是使用broadcast方式更新得到方案。目前测试可行请参考《Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)