傅里叶变换
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
傅里叶逆变换
img_back = cv.idft(f_ishift)
实验:将图像转换到频率域,低通滤波,将频率域转回到时域,显示图像
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread( 'd:/paojie_g.jpg' , 0 )
rows, cols = img.shape
crow, ccol = rows / / 2 , cols / / 2
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols, 2 ),np.uint8)
mask[crow - 30 :crow + 31 , ccol - 30 :ccol + 31 , :] = 1
# apply mask and inverse DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:, 0 ],img_back[:,:, 1 ])
plt.subplot( 121 ),plt.imshow(img, cmap = 'gray' )
plt.title( 'Input Image' ), plt.xticks([]), plt.yticks([])
plt.subplot( 122 ),plt.imshow(img_back, cmap = 'gray' )
plt.title( 'Low Pass Filter' ), plt.xticks([]), plt.yticks([])
plt.show()
|
原文链接:https://www.cnblogs.com/wojianxin/p/12684306.html