I'm trying split out individual dataframes from a groupby
to print them as pandas HTML tables. I need to reference and render them individually as tables so I can screenshot them for a presentation.
我尝试从groupby中分离出单个数据aframes,并将它们打印为熊猫HTML表。我需要引用并将它们单独呈现为表,这样我就可以通过屏幕截图来进行演示。
This is my current code:
这是我目前的代码:
import pandas as pd
df = pd.DataFrame(
{'area': [5, 42, 20, 20, 43, 78, 89, 30, 46, 78],
'cost': [52300, 52000, 25000, 61600, 43000, 23400, 52300, 62000, 62000, 73000],
'grade': [1, 3, 2, 1, 2, 2, 2, 4, 1, 2], 'size': [1045, 957, 1099, 1400, 1592, 1006, 987, 849, 973, 1005],
'team': ['man utd', 'chelsea', 'arsenal', 'man utd', 'man utd', 'arsenal', 'man utd', 'chelsea', 'arsenal', 'arsenal']})
result = df.groupby(['team', 'grade']).agg({'cost':'mean', 'area':'mean', 'size':'sum'}).rename(columns={'cost':'mean_cost', 'area':'mean_area'})
dfs = {team:grp.drop('team', axis=1)
for team, grp in result.reset_index().groupby('team')}
for team, grp in dfs.items():
print('{}:\n{}\n'.format(team, gap))
Which prints (as non HTML tables):
打印(非HTML表格):
chelsea:
grade mean_cost mean_area size
2 3 52000 42 957
3 4 62000 30 849
arsenal:
grade mean_cost mean_area size
0 1 62000.000000 46.000000 973
1 2 40466.666667 58.666667 3110
man utd:
grade mean_cost mean_area size
4 1 56950 12.5 2445
5 2 47650 66.0 2579
Is it possible to get these dataframes one by one as HTML tables? For the avoidance of doubt, I don't need an iterative method to return them all as HTML tables in one go - am happy to reference each one individually.
是否有可能把这些dataframes一个一个地作为HTML表?为了避免疑问,我不需要一个迭代的方法来一次性返回所有的HTML表——我很乐意分别引用每个表。
1 个解决方案
#1
9
As Thomas K points out, you could use IPython.core.display.display
to incorporate the display of DataFrames along with print statements in an IPython notebook:
正如Thomas K所指出的,你可以使用IPython.core.display。显示在IPython笔记本中包含DataFrames的显示和打印语句:
import pandas as pd
from IPython.core import display as ICD
df = pd.DataFrame(
{'area': [5, 42, 20, 20, 43, 78, 89, 30, 46, 78],
'cost': [52300, 52000, 25000, 61600, 43000, 23400, 52300, 62000, 62000, 73000],
'grade': [1, 3, 2, 1, 2, 2, 2, 4, 1, 2], 'size': [1045, 957, 1099, 1400, 1592, 1006, 987, 849, 973, 1005],
'team': ['man utd', 'chelsea', 'arsenal', 'man utd', 'man utd', 'arsenal', 'man utd', 'chelsea', 'arsenal', 'arsenal']})
result = df.groupby(['team', 'grade']).agg({'cost':'mean', 'area':'mean', 'size':'sum'}).rename(columns={'cost':'mean_cost', 'area':'mean_area'})
dfs = {team:grp.drop('team', axis=1)
for team, grp in result.reset_index().groupby('team')}
for team, grp in dfs.items():
print(team)
ICD.display(grp)
生成
#1
9
As Thomas K points out, you could use IPython.core.display.display
to incorporate the display of DataFrames along with print statements in an IPython notebook:
正如Thomas K所指出的,你可以使用IPython.core.display。显示在IPython笔记本中包含DataFrames的显示和打印语句:
import pandas as pd
from IPython.core import display as ICD
df = pd.DataFrame(
{'area': [5, 42, 20, 20, 43, 78, 89, 30, 46, 78],
'cost': [52300, 52000, 25000, 61600, 43000, 23400, 52300, 62000, 62000, 73000],
'grade': [1, 3, 2, 1, 2, 2, 2, 4, 1, 2], 'size': [1045, 957, 1099, 1400, 1592, 1006, 987, 849, 973, 1005],
'team': ['man utd', 'chelsea', 'arsenal', 'man utd', 'man utd', 'arsenal', 'man utd', 'chelsea', 'arsenal', 'arsenal']})
result = df.groupby(['team', 'grade']).agg({'cost':'mean', 'area':'mean', 'size':'sum'}).rename(columns={'cost':'mean_cost', 'area':'mean_area'})
dfs = {team:grp.drop('team', axis=1)
for team, grp in result.reset_index().groupby('team')}
for team, grp in dfs.items():
print(team)
ICD.display(grp)
生成