Here is a sample data frame:
下面是一个示例数据框架:
> df = data.frame(rep(seq(0, 120, length.out=6), times = 2), c(sample(1:50, 4),
+ NA, NA, NA, sample(1:50, 5)))
> colnames(df) = c("Time", "Pat1")
> df
Time Pat1
1 0 33
2 24 48
3 48 7
4 72 8
5 96 NA
6 120 NA
7 0 NA
8 24 1
9 48 6
10 72 28
11 96 31
12 120 32
NAs which have to be replaced are identified by which
and logical operators:
需要替换的NAs由其和逻辑运算符识别:
x = which(is.na(df$Pat1) & df$Time == 0)
I know the locf()
command, but it's replacing all NAs. How can I replace only the NAs at position x in a multi-column df?
我知道locf()命令,但是它替换了所有的NAs。如何在多列df中仅替换位于x位置的NAs ?
EDIT: Here is a link to my original dataset: link
编辑:这是我原始数据集的链接:链接
And thats how far I get:
这就是我所得到的:
require(reshape2)
require(zoo)
pad.88 <- read.csv2("pad_88.csv")
colnames(pad.88) = c("Time", "Increment", "Side", 4:length(pad.88)-3)
attach(pad.88)
x = which(Time == 240 & Increment != 5)
pad.88 = pad.88[c(1:x[1], x[1]:x[2], x[2]:x[3], x[3]:x[4], x[4]:x[5], x[5]:x[6],x[6]:x[7], x[7]:x[8], x[8]:nrow(pad.88)),]
y = which(duplicated(pad.88))
pad.88$Time[y] = 0
pad.88$Increment[y] = Increment[x] + 1
z = which(is.na(pad.88[4:ncol(pad.88)] & pad.88$Time == 0), arr.ind=T)
a = na.locf(pad.88[4:ncol(pad.88)])
My next step is something like pat.cols[z] = a[z]
, which doesn't work.
我的下一步就像帕特。cols[z] = a[z],不起作用。
That's how the result should look like:
结果应该是这样的:
Time Increment Side 1 2 3 4 5 ...
150 4 0 27,478 24,076 27,862 20,001 25,261
165 4 0 27,053 24,838 27,231 20,001 NA
180 4 0 27,599 24,166 27,862 20,687 NA
195 4 0 27,114 23,403 27,862 20,001 NA
210 4 0 26,993 24,076 27,189 19,716 NA
225 4 0 26,629 24,21 26,221 19,887 NA
240 4 0 26,811 26,228 26,431 20,001 NA
0 5 1 26,811 26,228 26,431 20,001 25,261
15 5 1 ....
The last valid value in col 5 is 25,261. This value replaces the NA at Time 0/Col 5.
col 5中的最后一个有效值是25261。这个值在0/Col 5时替换NA。
1 个解决方案
#1
3
You can change it so that x
records all the NA
values and use the first and last from that to identify the locations you want.
您可以更改它,以便x记录所有的NA值,并使用第一个和最后一个来标识您想要的位置。
df
Time Pat1
1 0 36
2 24 13
3 48 32
4 72 38
5 96 NA
6 120 NA
7 0 NA
8 24 5
9 48 10
10 72 7
11 96 25
12 120 28
x <- which(is.na(df$Pat1))
df[rev(x)[1],"Pat1"] <- df[x[1]-1,"Pat1"]
df
Time Pat1
1 0 36
2 24 13
3 48 32
4 72 38
5 96 NA
6 120 NA
7 0 38
8 24 5
9 48 10
10 72 7
11 96 25
12 120 28
For the multi-column example use the same idea in a sapply
call:
对于多列示例,在sapply调用中使用相同的思想:
cbind(df[1],sapply(df[-1],function(x) {y<-which(is.na(x));x[rev(y)[1]]<-x[y[1]-1];x}))
Time Pat1 Pat2
1 0 41 42
2 24 8 30
3 48 3 41
4 72 14 NA
5 96 NA NA
6 120 NA NA
7 0 14 41
8 24 5 37
9 48 29 48
10 72 31 11
11 96 50 43
12 120 46 21
#1
3
You can change it so that x
records all the NA
values and use the first and last from that to identify the locations you want.
您可以更改它,以便x记录所有的NA值,并使用第一个和最后一个来标识您想要的位置。
df
Time Pat1
1 0 36
2 24 13
3 48 32
4 72 38
5 96 NA
6 120 NA
7 0 NA
8 24 5
9 48 10
10 72 7
11 96 25
12 120 28
x <- which(is.na(df$Pat1))
df[rev(x)[1],"Pat1"] <- df[x[1]-1,"Pat1"]
df
Time Pat1
1 0 36
2 24 13
3 48 32
4 72 38
5 96 NA
6 120 NA
7 0 38
8 24 5
9 48 10
10 72 7
11 96 25
12 120 28
For the multi-column example use the same idea in a sapply
call:
对于多列示例,在sapply调用中使用相同的思想:
cbind(df[1],sapply(df[-1],function(x) {y<-which(is.na(x));x[rev(y)[1]]<-x[y[1]-1];x}))
Time Pat1 Pat2
1 0 41 42
2 24 8 30
3 48 3 41
4 72 14 NA
5 96 NA NA
6 120 NA NA
7 0 14 41
8 24 5 37
9 48 29 48
10 72 31 11
11 96 50 43
12 120 46 21