I have the above data frame, Date&Time with corresponding signal value.
我有上面的数据框,日期和时间与相应的信号值。
- I need to replace all the positive value with 0
- Once replaced,
for every 60 seconds
, I need to calculatemean
andStd dev
and replace the value with mean which deviating a lot.
我需要将所有正值替换为0
一旦被替换,每60秒,我需要计算平均值和标准偏差,并将值替换为偏差很大的平均值。
For example, for the first 60 seconds, if the value at 2017-08-23 07:49:58 is deviating more from SD, then it should be replaced by mean. That means "59" should be replaced by mean
例如,对于前60秒,如果2017-08-23 07:49:58的值偏离SD更多,则应将其替换为均值。这意味着“59”应该用平均值代替
date-time RSSI
2017-08-23 07:49:38 -68
2017-08-23 07:49:48 -69
2017-08-23 07:49:58 -59
2017-08-23 07:50:08 -65
2017-08-23 07:50:18 127
2017-08-23 07:50:28 -74
2017-08-23 07:50:38 127
2017-08-23 07:50:48 -74
2017-08-23 07:50:58 127
2017-08-23 07:51:08 -74
2017-08-23 07:51:18 -65
2017-08-23 07:51:28 127
2017-08-23 07:51:38 -59
2017-08-23 07:51:48 -62
2017-08-23 07:51:58 -57
Expected output:
Output 1:
date-time RSSI
2017-08-23 07:49:38 -68
2017-08-23 07:49:48 -69
2017-08-23 07:49:58 -59
2017-08-23 07:50:08 -65
2017-08-23 07:50:18 0
Output 2:
date-time RSSI
2017-08-23 07:49:38 -68
2017-08-23 07:49:48 -69
2017-08-23 07:49:58 **-62**
2017-08-23 07:50:08 -65
2017-08-23 07:50:18 **-62**
Here -62 is mean and its replaced
这里-62是卑鄙的并取而代之
1 个解决方案
#1
2
Don't use for loops in R. Try and use vectored solutions and if you need performance usually the package data.table is what you want.
不要在R中使用for循环。尝试并使用向量解决方案,如果您需要性能,通常包data.table就是您想要的。
library(data.table)
dt = data.table("date-time"=c(as.POSIXct(c("2017-08-23 07:49:38", "2017-08-23 07:49:48", "2017-08-23 07:49:58", "2017-08-23 07:50:08", "2017-08-23 07:50:18", "2017-08-23 07:50:28" ))), RSSI=c(-68, -69, -59, -65, 127, -74))
dt[RSSI > 0 , RSSI:=NA] #replacing positive ones with NA
print(dt)
dt[ , minute:=floor(as.numeric(`date-time`)/60)] # calculate for each time in which minute it belongs
# calculate mean and standard deviation per group
dt[ , c("mean", "stdev") := list(mean(RSSI, na.rm=TRUE), sd(RSSI, na.rm=TRUE)), by = minute] #ignoring the NA outliers
dt[ abs(RSSI - mean) > stdev | is.na(RSSI), RSSI:=round(mean)] #round should return an integer
print(dt)
The solution you want should look similar to this. Reading a csv with data.table works best with the function fread.
您想要的解决方案应该与此类似。使用data.table读取csv最适合函数fread。
#1
2
Don't use for loops in R. Try and use vectored solutions and if you need performance usually the package data.table is what you want.
不要在R中使用for循环。尝试并使用向量解决方案,如果您需要性能,通常包data.table就是您想要的。
library(data.table)
dt = data.table("date-time"=c(as.POSIXct(c("2017-08-23 07:49:38", "2017-08-23 07:49:48", "2017-08-23 07:49:58", "2017-08-23 07:50:08", "2017-08-23 07:50:18", "2017-08-23 07:50:28" ))), RSSI=c(-68, -69, -59, -65, 127, -74))
dt[RSSI > 0 , RSSI:=NA] #replacing positive ones with NA
print(dt)
dt[ , minute:=floor(as.numeric(`date-time`)/60)] # calculate for each time in which minute it belongs
# calculate mean and standard deviation per group
dt[ , c("mean", "stdev") := list(mean(RSSI, na.rm=TRUE), sd(RSSI, na.rm=TRUE)), by = minute] #ignoring the NA outliers
dt[ abs(RSSI - mean) > stdev | is.na(RSSI), RSSI:=round(mean)] #round should return an integer
print(dt)
The solution you want should look similar to this. Reading a csv with data.table works best with the function fread.
您想要的解决方案应该与此类似。使用data.table读取csv最适合函数fread。