How do I read/write libsvm
data into/from R
?
如何读取/写入libsvm数据到R?
The libsvm
format is sparse data like
libsvm格式是稀疏数据。
<class/target>[ <attribute number>:<attribute value>]*
(cf. Compressed Row Storage (CRS)) e.g.,
(cf.压缩行存储(CRS))
1 10:3.4 123:0.5 34567:0.231
0.2 22:1 456:03
I am sure I can whip some something myself, but I would much rather use something off the shelf. However, R
library foreign
does not seem to provide the necessary functionality.
我相信我自己可以做一些事情,但是我更愿意用现成的东西。然而,R图书馆外国似乎并没有提供必要的功能。
6 个解决方案
#1
12
e1071
is off the shelf:
install.packages("e1071")
library(e1071)
read.matrix.csr(...)
write.matrix.csr(...)
Note: it is implemented in R
, not in C
, so it is dog-slow.
注意:它是在R中实现的,而不是在C中实现的,所以它是dog-slow。
It even have a special vignette Support Vector Machines—the Interface to libsvm in package e1071.
它甚至有一个特殊的vignette支持向量机——在package e1071中对libsvm的接口。
r.vw
is bundled with vowpal_wabbit
Note: it is implemented in R
, not in C
, so it is dog-slow.
注意:它是在R中实现的,而不是在C中实现的,所以它是dog-slow。
#2
9
I have been running a job using the zygmuntz solution on a dataset with 25k observations (rows) for almost 5 hrs now. It has done 3k-ish rows. It was taking so long that I coded this up in the meantime (based on zygmuntz's code):
我已经在一个数据集上使用zygmuntz解决方案了,现在已经有25k的观察(行)了。它已经完成了3k行。花了很长时间,我在这段时间里编写了这个代码(基于zygmuntz的代码):
require(Matrix)
read.libsvm = function( filename ) {
content = readLines( filename )
num_lines = length( content )
tomakemat = cbind(1:num_lines, -1, substr(content,1,1))
# loop over lines
makemat = rbind(tomakemat,
do.call(rbind,
lapply(1:num_lines, function(i){
# split by spaces, remove lines
line = as.vector( strsplit( content[i], ' ' )[[1]])
cbind(i, t(simplify2array(strsplit(line[-1],
':'))))
})))
class(makemat) = "numeric"
#browser()
yx = sparseMatrix(i = makemat[,1],
j = makemat[,2]+2,
x = makemat[,3])
return( yx )
}
This ran in minutes on the same machine (there may have been memory issues with zygmuntz solution too, not sure). Hope this helps anyone with the same problem.
这在同一台机器上运行了几分钟(也可能是zygmuntz解决方案的内存问题)。希望这能帮助有同样问题的人。
Remember, if you need to do big computations in R, VECTORIZE!
记住,如果你需要在R上做大计算,矢量化!
EDIT: fixed an indexing error I found this morning.
编辑:修正了我今早发现的索引错误。
#3
3
I came up with my own ad hoc solution leveraging some data.table
utilities,
我想出了我自己的解决方案,利用一些数据。表工具,
It ran in almost no time on the test data set I found (Boston Housing data).
它几乎没有时间运行在我找到的测试数据集(波士顿房屋数据)。
Converting that to a data.table
(orthogonal to solution, but adding here for easy reproducibility):
将其转换为数据。表(正交于溶液,但在此增加易重现性):
library(data.table)
x = fread("/media/data_drive/housing.data.fw",
sep = "\n", header = FALSE)
#usually fixed-width conversion is harder, but everything here is numeric
columns = c("CRIM", "ZN", "INDUS", "CHAS",
"NOX", "RM", "AGE", "DIS", "RAD",
"TAX", "PTRATIO", "B", "LSTAT", "MEDV")
DT = with(x, fread(paste(gsub("\\s+", "\t", V1), collapse = "\n"),
header = FALSE, sep = "\t",
col.names = columns))
Here it is:
这里是:
DT[ , fwrite(as.data.table(paste0(
MEDV, " | ", sapply(transpose(lapply(
names(.SD), function(jj)
paste0(jj, ":", get(jj)))),
paste, collapse = " "))),
"/path/to/output", col.names = FALSE, quote = FALSE),
.SDcols = !"MEDV"]
#what gets sent to as.data.table:
#[1] "24 | CRIM:0.00632 ZN:18 INDUS:2.31 CHAS:0 NOX:0.538 RM:6.575
# AGE:65.2 DIS:4.09 RAD:1 TAX:296 PTRATIO:15.3 B:396.9 LSTAT:4.98 MEDV:24"
#[2] "21.6 | CRIM:0.02731 ZN:0 INDUS:7.07 CHAS:0 NOX:0.469 RM:6.421
# AGE:78.9 DIS:4.9671 RAD:2 TAX:242 PTRATIO:17.8 B:396.9 LSTAT:9.14 MEDV:21.6"
# ...
There may be a better way to get this understood by fwrite
than as.data.table
, but I can't think of one (until setDT
works on vectors).
也许有一种更好的方法可以通过fwrite来理解这一点。表,但是我不能想到一个(直到setDT在向量上工作)。
I replicated this to test its performance on a bigger data set (just blow up the current data set):
我将其复制到一个更大的数据集中测试它的性能(只是放大了当前的数据集):
DT2 = rbindlist(replicate(1000, DT, simplify = FALSE))
The operation was pretty fast compared to some of the times reported here (I haven't bothered comparing directly yet):
与这里报道的一些时间相比,这个操作相当快(我还没有直接比较):
system.time(.)
# user system elapsed
# 8.392 0.000 8.385
I also tested using writeLines
instead of fwrite
, but the latter was better.
我也测试了使用writeLines而不是fwrite,但后者更好。
I am looking again and seeing it might take a while to figure out what's going on. Maybe the magrittr
-piped version will be easier to follow:
我再看一遍,看可能需要一段时间才能弄清楚到底发生了什么。也许magrittr-piped版本更容易理解:
DT[ ,
#1) prepend each column's values with the column name
lapply(names(.SD), function(jj)
paste0(jj, ":", get(jj))) %>%
#2) transpose this list (using data.table's fast tool)
# (was column-wise, now row-wise)
#3) concatenate columns, separated by " "
transpose %>% sapply(paste, collapse = " ") %>%
#4) prepend each row with the target value
# (with Vowpal Wabbit in mind, separate with a pipe)
paste0(MEDV, " | ", .) %>%
#5) convert this to a data.table to use fwrite
as.data.table %>%
#6) fwrite it; exclude nonsense column name,
# and force quotes off
fwrite("/path/to/data",
col.names = FALSE, quote = FALSE),
.SDcols = !"MEDV"]
reading in such files is much easier**
在这样的文件中阅读容易得多。
#quickly read data; don't split within lines
x = fread("/path/to/data", sep = "\n", header = FALSE)
#tstrsplit is transpose(strsplit(.))
dt1 = x[ , tstrsplit(V1, split = "[| :]+")]
#even columns have variable names
nms = c("target_name",
unlist(dt1[1L, seq(2L, ncol(dt1), by = 2L),
with = FALSE]))
#odd columns have values
DT = dt1[ , seq(1L, ncol(dt1), by = 2L), with = FALSE]
#add meaningful names
setnames(DT, nms)
**this will not work with "ragged"/sparse input data. I don't think there's a way to extend this to work in such cases.
这将不会使用“不规则”/稀疏的输入数据。我认为在这种情况下没有办法将其扩展到工作中。
#4
2
Try these functions and examples:
试试这些功能和例子:
https://github.com/zygmuntz/r-libsvm-format-read-write
https://github.com/zygmuntz/r-libsvm-format-read-write
#5
2
Based on some comments. I add it as an aswer so it's easier for others to use. This is to write data in libsvm format.Function to write a data.frame to svm light format. I've added a train={TRUE, FALSE} argument in case the data doesn't have labels. In this case, the class index is ignored.
函数为svm的光格式写入数据。我添加了一个列={TRUE, FALSE}参数,以防数据没有标签。在这种情况下,类索引被忽略。
write.libsvm = function(data, filename= "out.dat", class = 1, train=TRUE) {
out = file(filename)
if(train){
writeLines(apply(data, 1, function(X) {
paste(X[class],
apply(cbind(which(X!=0)[-class],
X[which(X!=0)[-class]]),
1, paste, collapse=":"),
collapse=" ")
}), out)
} else {
# leaves 1 as default for the new data without predictions.
writeLines(apply(data, 1, function(X) {
paste('1',
apply(cbind(which(X!=0), X[which(X!=0)]), 1, paste, collapse=":"),
collapse=" ")
}), out)
}
close(out)
}
** EDIT **
* *编辑* *
Another option - In case you already have the data in a data.table object
libfm and SVMlight have the same format, so this function should work.
library(data.table)
data.table.fm <- function (data = X, fileName = "../out.fm", target = "y_train",
train = TRUE) {
if (train) {
if (is.logical(data[[target]]) | sum(levels(factor(data[[target]])) ==
levels(factor(c(0, 1)))) == 2) {
data[[target]][data[[target]] == TRUE] = 1
data[[target]][data[[target]] == FALSE] = -1
}
}
specChar = "\\(|\\)|\\||\\:"
specCharSpace = "\\(|\\)|\\||\\:| "
parsingNames <- function(x) {
ret = c()
for (el in x) ret = append(ret, gsub(specCharSpace, "_",
el))
ret
}
parsingVar <- function(x, keepSpace, hard_parse) {
if (!keepSpace)
spch = specCharSpace
else spch = specChar
if (hard_parse)
gsub("(^_( *|_*)+)|(^_$)|(( *|_*)+_$)|( +_+ +)",
" ", gsub(specChar, "_", gsub("(^ +)|( +$)",
"", x)))
else gsub(spch, "_", x)
}
setnames(data, names(data), parsingNames(names(data)))
target = parsingNames(target)
format_vw <- function(column, formater) {
ifelse(as.logical(column), sprintf(formater, j, column),
"")
}
all_vars = names(data)[!names(data) %in% target]
cat("Reordering data.table if class isn't first\n")
target_inx = which(names(data) %in% target)
rest_inx = which(!names(data) %in% target)
cat("Adding Variable names to data.table\n")
for (j in rest_inx) {
column = data[[j]]
formater = "%s:%f"
set(data, i = NULL, j = j, value = format_vw(column,
formater))
cat(sprintf("Fixing %s\n", j))
}
data = data[, c(target_inx, rest_inx), with = FALSE]
drop_extra_space <- function(x) {
gsub(" {1,}", " ", x)
}
cat("Pasting data - Removing extra spaces\n")
data = apply(data, 1, function(x) drop_extra_space(paste(x,
collapse = " ")))
cat("Writing to disk\n")
write.table(data, file = fileName, sep = " ", row.names = FALSE,
col.names = FALSE, quote = FALSE)
}
#6
0
I went with a two-hop solution - convert R data to another format first, and then to LIBSVM:
我使用了一个两跳解决方案——先将R数据转换为另一种格式,然后再将其转换为LIBSVM:
- Used R package foreign to convert (and write out) data frame to ARFF format (modified write.arff changing write.table to na="0.0" instead of na="?" otherwise step 2 fails)
- 使用R包外转换(并写出)数据帧到ARFF格式(修改后的写)。飞机救援消防改变写。表到na="0.0"而不是na="?"否则步骤2失败)
- Used https://github.com/dat/svm-tools/blob/master/arff2svm.py to convert ARFF format to LIBSVM
- 使用https://github.com/dat/svm-tools/blob/master/arff2svm.py将ARFF格式转换为LIBSVM。
My data set is 200K x 500 and this only took 3-5 minutes.
我的数据集是200kx 500,这只花了3-5分钟。
#1
12
e1071
is off the shelf:
install.packages("e1071")
library(e1071)
read.matrix.csr(...)
write.matrix.csr(...)
Note: it is implemented in R
, not in C
, so it is dog-slow.
注意:它是在R中实现的,而不是在C中实现的,所以它是dog-slow。
It even have a special vignette Support Vector Machines—the Interface to libsvm in package e1071.
它甚至有一个特殊的vignette支持向量机——在package e1071中对libsvm的接口。
r.vw
is bundled with vowpal_wabbit
Note: it is implemented in R
, not in C
, so it is dog-slow.
注意:它是在R中实现的,而不是在C中实现的,所以它是dog-slow。
#2
9
I have been running a job using the zygmuntz solution on a dataset with 25k observations (rows) for almost 5 hrs now. It has done 3k-ish rows. It was taking so long that I coded this up in the meantime (based on zygmuntz's code):
我已经在一个数据集上使用zygmuntz解决方案了,现在已经有25k的观察(行)了。它已经完成了3k行。花了很长时间,我在这段时间里编写了这个代码(基于zygmuntz的代码):
require(Matrix)
read.libsvm = function( filename ) {
content = readLines( filename )
num_lines = length( content )
tomakemat = cbind(1:num_lines, -1, substr(content,1,1))
# loop over lines
makemat = rbind(tomakemat,
do.call(rbind,
lapply(1:num_lines, function(i){
# split by spaces, remove lines
line = as.vector( strsplit( content[i], ' ' )[[1]])
cbind(i, t(simplify2array(strsplit(line[-1],
':'))))
})))
class(makemat) = "numeric"
#browser()
yx = sparseMatrix(i = makemat[,1],
j = makemat[,2]+2,
x = makemat[,3])
return( yx )
}
This ran in minutes on the same machine (there may have been memory issues with zygmuntz solution too, not sure). Hope this helps anyone with the same problem.
这在同一台机器上运行了几分钟(也可能是zygmuntz解决方案的内存问题)。希望这能帮助有同样问题的人。
Remember, if you need to do big computations in R, VECTORIZE!
记住,如果你需要在R上做大计算,矢量化!
EDIT: fixed an indexing error I found this morning.
编辑:修正了我今早发现的索引错误。
#3
3
I came up with my own ad hoc solution leveraging some data.table
utilities,
我想出了我自己的解决方案,利用一些数据。表工具,
It ran in almost no time on the test data set I found (Boston Housing data).
它几乎没有时间运行在我找到的测试数据集(波士顿房屋数据)。
Converting that to a data.table
(orthogonal to solution, but adding here for easy reproducibility):
将其转换为数据。表(正交于溶液,但在此增加易重现性):
library(data.table)
x = fread("/media/data_drive/housing.data.fw",
sep = "\n", header = FALSE)
#usually fixed-width conversion is harder, but everything here is numeric
columns = c("CRIM", "ZN", "INDUS", "CHAS",
"NOX", "RM", "AGE", "DIS", "RAD",
"TAX", "PTRATIO", "B", "LSTAT", "MEDV")
DT = with(x, fread(paste(gsub("\\s+", "\t", V1), collapse = "\n"),
header = FALSE, sep = "\t",
col.names = columns))
Here it is:
这里是:
DT[ , fwrite(as.data.table(paste0(
MEDV, " | ", sapply(transpose(lapply(
names(.SD), function(jj)
paste0(jj, ":", get(jj)))),
paste, collapse = " "))),
"/path/to/output", col.names = FALSE, quote = FALSE),
.SDcols = !"MEDV"]
#what gets sent to as.data.table:
#[1] "24 | CRIM:0.00632 ZN:18 INDUS:2.31 CHAS:0 NOX:0.538 RM:6.575
# AGE:65.2 DIS:4.09 RAD:1 TAX:296 PTRATIO:15.3 B:396.9 LSTAT:4.98 MEDV:24"
#[2] "21.6 | CRIM:0.02731 ZN:0 INDUS:7.07 CHAS:0 NOX:0.469 RM:6.421
# AGE:78.9 DIS:4.9671 RAD:2 TAX:242 PTRATIO:17.8 B:396.9 LSTAT:9.14 MEDV:21.6"
# ...
There may be a better way to get this understood by fwrite
than as.data.table
, but I can't think of one (until setDT
works on vectors).
也许有一种更好的方法可以通过fwrite来理解这一点。表,但是我不能想到一个(直到setDT在向量上工作)。
I replicated this to test its performance on a bigger data set (just blow up the current data set):
我将其复制到一个更大的数据集中测试它的性能(只是放大了当前的数据集):
DT2 = rbindlist(replicate(1000, DT, simplify = FALSE))
The operation was pretty fast compared to some of the times reported here (I haven't bothered comparing directly yet):
与这里报道的一些时间相比,这个操作相当快(我还没有直接比较):
system.time(.)
# user system elapsed
# 8.392 0.000 8.385
I also tested using writeLines
instead of fwrite
, but the latter was better.
我也测试了使用writeLines而不是fwrite,但后者更好。
I am looking again and seeing it might take a while to figure out what's going on. Maybe the magrittr
-piped version will be easier to follow:
我再看一遍,看可能需要一段时间才能弄清楚到底发生了什么。也许magrittr-piped版本更容易理解:
DT[ ,
#1) prepend each column's values with the column name
lapply(names(.SD), function(jj)
paste0(jj, ":", get(jj))) %>%
#2) transpose this list (using data.table's fast tool)
# (was column-wise, now row-wise)
#3) concatenate columns, separated by " "
transpose %>% sapply(paste, collapse = " ") %>%
#4) prepend each row with the target value
# (with Vowpal Wabbit in mind, separate with a pipe)
paste0(MEDV, " | ", .) %>%
#5) convert this to a data.table to use fwrite
as.data.table %>%
#6) fwrite it; exclude nonsense column name,
# and force quotes off
fwrite("/path/to/data",
col.names = FALSE, quote = FALSE),
.SDcols = !"MEDV"]
reading in such files is much easier**
在这样的文件中阅读容易得多。
#quickly read data; don't split within lines
x = fread("/path/to/data", sep = "\n", header = FALSE)
#tstrsplit is transpose(strsplit(.))
dt1 = x[ , tstrsplit(V1, split = "[| :]+")]
#even columns have variable names
nms = c("target_name",
unlist(dt1[1L, seq(2L, ncol(dt1), by = 2L),
with = FALSE]))
#odd columns have values
DT = dt1[ , seq(1L, ncol(dt1), by = 2L), with = FALSE]
#add meaningful names
setnames(DT, nms)
**this will not work with "ragged"/sparse input data. I don't think there's a way to extend this to work in such cases.
这将不会使用“不规则”/稀疏的输入数据。我认为在这种情况下没有办法将其扩展到工作中。
#4
2
Try these functions and examples:
试试这些功能和例子:
https://github.com/zygmuntz/r-libsvm-format-read-write
https://github.com/zygmuntz/r-libsvm-format-read-write
#5
2
Based on some comments. I add it as an aswer so it's easier for others to use. This is to write data in libsvm format.Function to write a data.frame to svm light format. I've added a train={TRUE, FALSE} argument in case the data doesn't have labels. In this case, the class index is ignored.
函数为svm的光格式写入数据。我添加了一个列={TRUE, FALSE}参数,以防数据没有标签。在这种情况下,类索引被忽略。
write.libsvm = function(data, filename= "out.dat", class = 1, train=TRUE) {
out = file(filename)
if(train){
writeLines(apply(data, 1, function(X) {
paste(X[class],
apply(cbind(which(X!=0)[-class],
X[which(X!=0)[-class]]),
1, paste, collapse=":"),
collapse=" ")
}), out)
} else {
# leaves 1 as default for the new data without predictions.
writeLines(apply(data, 1, function(X) {
paste('1',
apply(cbind(which(X!=0), X[which(X!=0)]), 1, paste, collapse=":"),
collapse=" ")
}), out)
}
close(out)
}
** EDIT **
* *编辑* *
Another option - In case you already have the data in a data.table object
libfm and SVMlight have the same format, so this function should work.
library(data.table)
data.table.fm <- function (data = X, fileName = "../out.fm", target = "y_train",
train = TRUE) {
if (train) {
if (is.logical(data[[target]]) | sum(levels(factor(data[[target]])) ==
levels(factor(c(0, 1)))) == 2) {
data[[target]][data[[target]] == TRUE] = 1
data[[target]][data[[target]] == FALSE] = -1
}
}
specChar = "\\(|\\)|\\||\\:"
specCharSpace = "\\(|\\)|\\||\\:| "
parsingNames <- function(x) {
ret = c()
for (el in x) ret = append(ret, gsub(specCharSpace, "_",
el))
ret
}
parsingVar <- function(x, keepSpace, hard_parse) {
if (!keepSpace)
spch = specCharSpace
else spch = specChar
if (hard_parse)
gsub("(^_( *|_*)+)|(^_$)|(( *|_*)+_$)|( +_+ +)",
" ", gsub(specChar, "_", gsub("(^ +)|( +$)",
"", x)))
else gsub(spch, "_", x)
}
setnames(data, names(data), parsingNames(names(data)))
target = parsingNames(target)
format_vw <- function(column, formater) {
ifelse(as.logical(column), sprintf(formater, j, column),
"")
}
all_vars = names(data)[!names(data) %in% target]
cat("Reordering data.table if class isn't first\n")
target_inx = which(names(data) %in% target)
rest_inx = which(!names(data) %in% target)
cat("Adding Variable names to data.table\n")
for (j in rest_inx) {
column = data[[j]]
formater = "%s:%f"
set(data, i = NULL, j = j, value = format_vw(column,
formater))
cat(sprintf("Fixing %s\n", j))
}
data = data[, c(target_inx, rest_inx), with = FALSE]
drop_extra_space <- function(x) {
gsub(" {1,}", " ", x)
}
cat("Pasting data - Removing extra spaces\n")
data = apply(data, 1, function(x) drop_extra_space(paste(x,
collapse = " ")))
cat("Writing to disk\n")
write.table(data, file = fileName, sep = " ", row.names = FALSE,
col.names = FALSE, quote = FALSE)
}
#6
0
I went with a two-hop solution - convert R data to another format first, and then to LIBSVM:
我使用了一个两跳解决方案——先将R数据转换为另一种格式,然后再将其转换为LIBSVM:
- Used R package foreign to convert (and write out) data frame to ARFF format (modified write.arff changing write.table to na="0.0" instead of na="?" otherwise step 2 fails)
- 使用R包外转换(并写出)数据帧到ARFF格式(修改后的写)。飞机救援消防改变写。表到na="0.0"而不是na="?"否则步骤2失败)
- Used https://github.com/dat/svm-tools/blob/master/arff2svm.py to convert ARFF format to LIBSVM
- 使用https://github.com/dat/svm-tools/blob/master/arff2svm.py将ARFF格式转换为LIBSVM。
My data set is 200K x 500 and this only took 3-5 minutes.
我的数据集是200kx 500,这只花了3-5分钟。