I am trying to write a function in R which lumps species columns together within a data.frame.
我试图在R中编写一个函数,它将物种列集中在data.frame中。
(To elaborate a bit on what I'm doing...I have a data frame with multiple plant species for multiple sites and years. Some of the species were misidentified, so I'd like to group to a more general level (e.g. spp a and spp b were mixed up throughout the years; so I'd like to create a new column called spp.ab in which the data for spp a and b are lumped together)).
(详细说明我正在做的事情......我有一个多个植物种类的数据框,用于多个地点和多年。有些物种被误认,所以我想分组到更一般的水平(例如spp a和spp b多年来混淆了;所以我想创建一个名为spp.ab的新列,其中spp a和b的数据被集中在一起))。
Example:
例:
spp.a spp.b
1 0
2 3
0 4
3 2
4 5
I'd like to eventually end up with a single column that displays the maximum from value from the two species:
我想最终得到一个列,显示两个物种的最大值:
spp.ab
1
3
4
3
5
I've started writing a function which does this; however, I'm having troubling adding the new column to my data set and dropping the old ones. Could someone tell me what's wrong with my code?
我已经开始编写一个函数来执行此操作;但是,我很难将新列添加到我的数据集并删除旧列。有人能告诉我我的代码有什么问题吗?
lump <- function(db, spp.list, new.spp) { #input spp.list as c('spp.a', 'spp.b', ...)
mini.db <- subset(db, select=spp.list);
newcol <- as.vector(apply(mini.db, 1, max, na.rm=T));
db$new.spp <- newcol
db <- db[,names(db) %in% spp.list]
return(db)
}
When I call the function as such
当我这样调用函数时
test <- lump(db, c('spp.a', 'spp.b'), spp.ab)
test
all that pops up is the mini.db. Am I missing something with return()?
弹出的就是mini.db.我错过了return()的东西吗?
For reference, db is the database, spp.list is the species I want to lump together, and new.spp is what I would like the new column named.
作为参考,db是数据库,spp.list是我想要混在一起的物种,new.spp是我想要的新列命名。
Thanks for any help,
Paul
谢谢你的帮助,保罗
2 个解决方案
#1
1
I've figured it out...stupid mistake, of course. Here is the code that works:
当然,我已经弄清楚了......愚蠢的错误。这是有效的代码:
lump <- function(db, spp.list, new.spp) { #input spp.list as a c('spp.a', 'spp.b', ...), and new.spp must be in quotes (e.g. 'new.spp')
mini.db <- subset(db, select=spp.list);
newcol <- as.vector(apply(mini.db, 1, max, na.rm=T));
newcol[newcol==-Inf] <- NA;
db[new.spp] <- newcol;
db <- db[, !names(db) %in% spp.list];
return(as.data.frame(db));
}
The key is in the db[new.spp] <- newcol;
line. Apparently using this works, but using db$new.spp <- newcol
does not. I also then added a !
to the line db <- db[,!names(db) %in% spp.list]
. This was my biggest mistake.
关键是在db [new.spp] < - newcol;线。显然使用这个工作,但使用db $ new.spp < - newcol没有。我还加了一个!到db < - db [,!name(db)%in%spp.list]中的行。这是我最大的错误。
#2
0
While it seems like you've found your answer, I would suggest, instead, the pmax
function:
虽然看起来你找到了答案,但我建议使用pmax函数:
> with(db, pmax(spp.a, spp.b))
[1] 1 3 4 3 5
You can use this with within
or transform
to mimic your function:
您可以在内部使用它或转换来模仿您的功能:
out <- within(db, spp.ab <- pmax(spp.a, spp.b))
out
# spp.a spp.b spp.ab
# 1 1 0 1
# 2 2 3 3
# 3 0 4 4
# 4 3 2 3
# 5 4 5 5
#1
1
I've figured it out...stupid mistake, of course. Here is the code that works:
当然,我已经弄清楚了......愚蠢的错误。这是有效的代码:
lump <- function(db, spp.list, new.spp) { #input spp.list as a c('spp.a', 'spp.b', ...), and new.spp must be in quotes (e.g. 'new.spp')
mini.db <- subset(db, select=spp.list);
newcol <- as.vector(apply(mini.db, 1, max, na.rm=T));
newcol[newcol==-Inf] <- NA;
db[new.spp] <- newcol;
db <- db[, !names(db) %in% spp.list];
return(as.data.frame(db));
}
The key is in the db[new.spp] <- newcol;
line. Apparently using this works, but using db$new.spp <- newcol
does not. I also then added a !
to the line db <- db[,!names(db) %in% spp.list]
. This was my biggest mistake.
关键是在db [new.spp] < - newcol;线。显然使用这个工作,但使用db $ new.spp < - newcol没有。我还加了一个!到db < - db [,!name(db)%in%spp.list]中的行。这是我最大的错误。
#2
0
While it seems like you've found your answer, I would suggest, instead, the pmax
function:
虽然看起来你找到了答案,但我建议使用pmax函数:
> with(db, pmax(spp.a, spp.b))
[1] 1 3 4 3 5
You can use this with within
or transform
to mimic your function:
您可以在内部使用它或转换来模仿您的功能:
out <- within(db, spp.ab <- pmax(spp.a, spp.b))
out
# spp.a spp.b spp.ab
# 1 1 0 1
# 2 2 3 3
# 3 0 4 4
# 4 3 2 3
# 5 4 5 5