I've got a dataframe df_a
with id information:
我有一个带有id信息的数据帧df_a:
unique_id lacet_number
15 5570613 TLA-0138365
24 5025490 EMP-0138757
36 4354431 DXN-0025343
and another dataframe df_b
, with the same number of rows that I know correspond to the rows in df_a
:
和另一个数据帧df_b,我知道的行数与df_a中的行相对应:
latitude longitude
0 -93.193560 31.217029
1 -93.948082 35.360874
2 -103.131508 37.787609
What I want to do is simply cbind the two and get:
我想要做的只是简单地解决这两个问题并得到:
unique_id lacet_number latitude longitude
0 5570613 TLA-0138365 -93.193560 31.217029
1 5025490 EMP-0138757 -93.948082 35.360874
2 4354431 DXN-0025343 -103.131508 37.787609
What I have tried:
我试过的:
df_c = pd.concat([df_a, df_b], axis=1)
which gives me an outer join.
这给了我一个外连接。
unique_id lacet_number latitude longitude
0 NaN NaN -93.193560 31.217029
1 NaN NaN -93.948082 35.360874
2 NaN NaN -103.131508 37.787609
15 5570613 TLA-0138365 NaN NaN
24 5025490 EMP-0138757 NaN NaN
36 4354431 DXN-0025343 NaN NaN
The problem is that the indices for the two dataframes do not match. I read the documentation for pandas.concat, and saw that there is an option "ignore_index". But that only applies to the concatenation axis, in my case the columns and it certainly is not the right choice for me. So my question is: is there a simple way to achieve this?
问题是两个数据帧的索引不匹配。我阅读了pandas.concat的文档,发现有一个选项“ignore_index”。但这仅适用于连接轴,在我的情况下,列和它当然不适合我。所以我的问题是:有没有一种简单的方法来实现这一目标?
1 个解决方案
#1
46
If you're sure the index row values are the same then to avoid the index alignment order then just call reset_index()
, this will reset your index values back to start from 0
:
如果您确定索引行值是相同的,那么为了避免索引对齐顺序然后只需调用reset_index(),这将重置索引值从0开始:
df_c = pd.concat([df_a.reset_index(drop=True), df_b], axis=1)
#1
46
If you're sure the index row values are the same then to avoid the index alignment order then just call reset_index()
, this will reset your index values back to start from 0
:
如果您确定索引行值是相同的,那么为了避免索引对齐顺序然后只需调用reset_index(),这将重置索引值从0开始:
df_c = pd.concat([df_a.reset_index(drop=True), df_b], axis=1)