已知一有向图G=<V,E>,顶点集合V={1,2,...,n},我们可能希望确定对所有顶点对i,j ∈ V,图G中事发后都存在一条从i到 j 的路径。G的传递闭包定义为图,其中:
在Θ(n^3)时间内计算出图的传递闭包的一种方法是对E中每条边赋以权值1,然后运行Floyd-Warshall算法。如果顶点i到顶点j存在一条路径,则d(i,j)<n,否则d(i,j)=∞。
另一种方法与Floyd-Warshall类似,可以在Θ(n^3)内计算出图G的传递闭包,且在实际中可以节省时空需求,具体原理如下:
将Floyd-Warshall中的min和+操作,用相应的逻辑运算∨(逻辑OR)和∧(逻辑AND)来代替,对于i,j,k = 1,2,...,n,如果图G中从顶点i到顶点j存在一条通路,且所有中间顶点均属于集合{1,2,...k},则定义如下:
当k ≥ 1时,有:
伪代码:
EG:
完整代码:
#include<iostream>
#include<climits>
#include<iomanip>
using namespace std;
typedef int vType;
typedef int wType;
typedef struct edge{
vType u; // the start of edge
vType v; // the end of edge
}edge;
typedef struct MGraph{
int vNum;
int eNum;
vType *V;
edge *E;
}MGraph;
void Matrix_Print(bool **M,int n)
{
for(int i=0; i< n; i++)
{
for(int j=0; j<n; j++)
cout<<setw(2)<<M[i][j];
cout<<endl;
}
}
int Locate(MGraph &G,vType v)
{
for(int i=0; i<G.vNum; i++)
if(v == G.V[i])
return i;
return -1;
}
void Graph_Init(MGraph &G,vType V[],edge E[])
{
//init the vertices
G.V = new vType[G.vNum];
for(int i=0; i<G.vNum; i++)
G.V[i] = V[i];
//init the edge
G.E = new edge[G.eNum];
for(int i=0 ; i<G.eNum; i++){
G.E[i].u = E[i].u;
G.E[i].v = E[i].v;
}
}
bool **Matrix_Copy(bool **M,int n)
{
bool **T = new bool*[n];
for(int i=0; i<n; i++)
T[i] = new bool[n];
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
T[i][j] = M[i][j];
return T;
}
/*----------------------Transitive Closure Alogrithm-----------------------------*/
bool **T;
bool **Transitive_Closure(MGraph &G){
int n = G.vNum;
//alloc memory for matrix T;
T = new bool*[n];
for(int i=0; i<n; i++)
T[i]= new bool[n];
//when beginning,matrix T denote T[0]
for(int i =0 ; i<n; i++)
for(int j=0; j<n; j++)
if(i == j)
T[i][j] = 1;
else
T[i][j] = 0;
for(int i=0; i<G.eNum; i++)
{
int u_i = Locate(G,G.E[i].u);
int v_i = Locate(G,G.E[i].v);
T[u_i][v_i] = 1;
}
bool **tempT = new bool*[n];
for(int i=0; i<n; i++)
tempT[i] = new bool[n];
for(int k=0; k<n; k++){
tempT = Matrix_Copy(T,n);
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
T[i][j] = tempT[i][j] | (tempT[i][k] & tempT[k][j]);
//cout<<"The "<<k<<"th round is:"<<endl;
//Matrix_Print(T,n);
}
return T;
}
/*-------------------------------------------------------------------------------*/
int main()
{
vType V[]={1,2,3,4};
edge E[]={{2,3},{2,4},{3,2},{4,1},{4,3}};
MGraph G;
G.vNum = sizeof(V)/sizeof(vType);
G.eNum = sizeof(E)/sizeof(edge) ;
Graph_Init(G,V,E);
T = Transitive_Closure(G);
cout<<"The final transitive closure matrix is:"<<endl;
Matrix_Print(T,G.vNum);
return 0;
}
运行结果:
【注:若有错误,请指正~~~】