在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward_cpu),在python 中是(setup,reshape,forward_cpu,backword_cpu)。
prototxt
layer {
name: "data"
type: "Python"
top: "data"
top: "label"
include {
phase: TRAIN
}
python_param {
module: "src.data_layer.rank_layer_live" # 不能代目录形式
layer: "DataLayer"
param_str: " {\'pascal_root\': \'data\' ,\'split\': \'live_train\', \'im_shape\': [224, 224],\'batch_size\': 32}"
}
}
layer {
name: "data"
type: "Python"
top: "data"
top: "label"
include {
phase: TEST
}
python_param {
module: "src.data_layer.rank_layer_live"
layer: "DataLayer"
#batch_size: 160
param_str: " {\'pascal_root\': \'data\' ,\'split\': \'live_test\', \'im_shape\': [224, 224],\'batch_size\': 32}"
}
}
- 数据定义层:
import cv2
import sys
sys.path.append("/home/rjw/caffe/python")
import caffe
import numpy as np
import multiprocessing as mtp
import pdb
import os.path as osp ## 理解参考:https://blog.csdn.net/auto1993/article/details/78951849 class DataLayer(caffe.Layer): def setup(self, bottom, top): self._name_to_top_map = {}
self._name_to_top_map['data'] = 0
self._name_to_top_map['label'] = 1
# === Read input parameters ===
self.workers= mtp.Pool(10)
# params is a python dictionary with layer parameters.
params = eval(self.param_str) # Check the paramameters for validity.
check_params(params) # store input as class variables
self.batch_size = params['batch_size']
self.pascal_root = params['pascal_root']
self.im_shape = params['im_shape']
# get list of image indexes.
list_file = params['split'] + '.txt'
filename = [line.rstrip('\n') for line in open(
osp.join(self.pascal_root, list_file))]
self._roidb = []
self.scores =[]
for i in filename:
self._roidb.append(i.split()[0])
self.scores.append(float(i.split()[1]))
self._perm = None
self._cur = 0
self.num =0 top[0].reshape(
self.batch_size, 3, params['im_shape'][0], params['im_shape'][1]) top[1].reshape(self.batch_size, 1) def _get_next_minibatch_inds(self):
"""Return the roidb indices for the next minibatch."""
db_inds = []
dis = 4 # total number of distortions in live dataset
batch = 2 # number of images for each distortion level
level = 4 # distortion levels for each mini_batch = level * dis_mini*batch
#shuff = np.random.permutation(range(dis))
Num = len(self.scores)/dis/level
for k in range(dis):
for i in range(level):
temp = self.num
for j in range(batch):
db_inds.append(len(self.scores)/dis*k+i*Num+temp)
temp = temp +1
self.num = self.num+batch
if Num-self.num<batch:
self.num=0
db_inds = np.asarray(db_inds)
return db_inds def get_minibatch(self,minibatch_db):
"""Given a roidb, construct a minibatch sampled from it."""
# Get the input image blob, formatted for caffe jobs =self.workers.map(preprocess,minibatch_db)
#print len(jobs)
index = 0
images_train = np.zeros([self.batch_size,3,224,224],np.float32)
#pdb.set_trace()
for index_job in range(len(jobs)):
images_train[index,:,:,:] = jobs[index_job]
index += 1 blobs = {'data': images_train}
return blobs def forward(self, bottom, top):
"""Get blobs and copy them into this layer's top blob vector.""" db_inds = self._get_next_minibatch_inds()
minibatch_db = []
for i in range(len(db_inds)):
minibatch_db.append(self._roidb[int(db_inds[i])])
#minibatch_db = [self._roidb[i] for i in db_inds]
#print minibatch_db
scores = []
for i in range(len(db_inds)):
scores.append(self.scores[int(db_inds[i])])
blobs = self.get_minibatch(minibatch_db)
blobs ['label'] =np.asarray(scores)
for blob_name, blob in blobs.iteritems():
top_ind = self._name_to_top_map[blob_name]
# Reshape net's input blobs
top[top_ind].reshape(*(blob.shape))
# Copy data into net's input blobs
top[top_ind].data[...] = blob.astype(np.float32, copy=False) def backward(self, top, propagate_down, bottom):
"""This layer does not propagate gradients."""
pass def reshape(self, bottom, top):
"""Reshaping happens during the call to forward."""
pass def preprocess(data): sp = 224
im = np.asarray(cv2.imread(data))
x = im.shape[0]
y = im.shape[1]
x_p = np.random.randint(x-sp,size=1)[0]
y_p = np.random.randint(y-sp,size=1)[0]
#print x_p,y_p
images = im[x_p:x_p+sp,y_p:y_p+sp,:].transpose([2,0,1])
#print images.shape
return images def check_params(params):
"""
A utility function to check the parameters for the data layers.
"""
assert 'split' in params.keys(
), 'Params must include split (train, val, or test).' required = ['batch_size', 'pascal_root', 'im_shape']
for r in required:
assert r in params.keys(), 'Params must include {}'.format(r)