Python笔记五(collections模块)

时间:2021-06-26 22:32:57

一、什么是模块

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

    但其实import加载的模块分为四个通用类别: 

  1 使用python编写的代码(.py文件)

  2 已被编译为共享库或DLL的C或C++扩展

  3 包好一组模块的包

  4 使用C编写并链接到python解释器的内置模块

为何要使用模块?

    如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

    随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用。

   常用的 和某个操作相关的 根据相关性分类,分成不同的模块。模块还分为三种: 内置模块 扩展模块 自定义模块。

二、collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

1、namedtuple

们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1, 2)

 

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。这时,namedtuple就派上了用场:

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(1, 2)
print(p.x)#>>>1
print(p.y)#>>>2

似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

 

2、deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

from collections import deque
q = deque(['a', 'b', 'c'])
q.append('x')
q.appendleft('y')
print(q)
#>>>deque(['y', 'a', 'b', 'c', 'x'])

 

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

from collections import deque
q = deque()
q.append(1)
q.append(2)
q.append(3)
q.append(4)
q.append(5)
print(q.pop())#>>>5
print(q)#>>>deque([1, 2,3,4])
print(q.popleft())#>>>1
print(q)#>>>deque([2, 3, 4])

 

 

3、OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

from collections import OrderedDict
d = dict([('a', 1), ('b', 2), ('c', 3)])
#d dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
#od  OrderedDict的Key是有序的
print(od)
#>>>OrderedDict([('a', 1), ('b', 2), ('c', 3)])

意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

from collections import OrderedDict
od = OrderedDict()
od['z'] = 1
od['y'] = 2
od['x'] = 3
od.keys() # 按照插入的Key的顺序返回
print(od)
#>>>OrderedDict([('z', 1), ('y', 2), ('x', 3)])

 

4、defaultdict 

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: { 'k1' : 大于 66  'k2' : 小于 66 }
1)原生字典解决方法
values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
    if value>66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]

2)defaultdict 字典解决方法

from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)

3)例子

from collections import defaultdict
my_dict = defaultdict(list)
my_dict['a'].append(1)
my_dict['a'].append(2)
my_dict['b'].append(3)
my_dict['c'] = 10
print(my_dict)
#>>>defaultdict(<class 'list'>, {'a': [1, 2], 'b': [3], 'c': 10})

 

5、Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})