本文基于jdk1.8
JavaCollection库中有三类:List,Queue,Set
其中List,有三个子实现类:ArrayList,Vector,LinkedList
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java
实现原理
transient Object[] elementData; // 存放元素的数组
private int size; // 实际存放元素的数量
ArrayList底层是使用一个Object类型的数组来存放数据的,size变量代表List实际存放元素的数量
add,remove,get,set,contains操作
get和set方法,都是通过数组下标,直接操作数据的,时间复杂度为O(1)
public boolean contains(Object o) {
return indexOf(o) >= 0;
} public int indexOf(Object o) {
// 遍历所有元素找到相同的元素,返回元素的下标,
// 如果是元素为null,则直接比较地址,否则使用equals的方法比较
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
add
public boolean add(E e) {
ensureCapacityInternal(size + 1); // 扩容检测
elementData[size++] = e; //新增元素添加到末尾
return true;
} public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // 扩容检测
// 使用System.arraycopy的方法,将index后面元素往后移动1位
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element; // 存放元素到index位置
size++;
}
remove
public E remove(int index) {
rangeCheck(index); //越界检测 modCount++;
E oldValue = elementData(index); //旧值 int numMoved = size - index - 1; // 需要移动元素的数量
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // 方便JVM进行GC操作,避免出现泄露 return oldValue;
}
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
removeRange
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
removeAll
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
retainAll
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
get
public E get(int index) {
rangeCheck(index); return elementData(index);
}
set
public E set(int index, E element) {
rangeCheck(index); E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
trimToSize()
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,length很size相同,节省空间。
clear
public void clear() {
modCount++; // clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
}
扩容策略
ArrayList底层是使用数组存储的,当数组大小不足存放新增元素的时候,才会发生扩容。
在add操作中,ArrayList首先会调用ensureCapacityInternal方法进行扩容检测的。
如果数组大小不足,则会自动扩容;如果扩容后的大小超出数组最大的大小,则会抛出异常。
ensureCapacityInternal(size + 1);
ArrayList扩容方案,主要有两个步骤:1.大小检测,2.扩容
-
大小检测:
检测数组大小是否为0,如果是,则使用默认的扩容大小10
检测是否需要扩容,只有当数组最小需要容量大小大于当前数组大小时,才会进行扩容
-
扩容:grow和hugeCapacity
进行数组越界判断
拷贝原始数据到新的数组中
private void ensureCapacityInternal(int minCapacity) {
// 通过ArrayList<Integer> a = new ArrayList<Integer>()或者通过序列化读取,元素大小为0时,底层数组才会为null数组
// 如果底层数组大小为0,则使用默认的容量大小10
if (elementData == EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
} ensureExplicitCapacity(minCapacity);
} private void ensureExplicitCapacity(int minCapacity) {
// 数据结构发生改变,和fail-fast机制有关,在使用迭代器过程中,只能通过迭代器的方法(比如迭代器中add,remove等),修改List的数据结构,
// 如果使用List的方法(比如List中的add,remove等),修改List的数据结构,会抛出ConcurrentModificationException
modCount++; // 当前数组容量大小不足时,才会调用grow方法,自动扩容
if (minCapacity - elementData.length > 0)
grow(minCapacity);
} private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 新的容量大小 = 原容量大小的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0) //溢出判断,比如minCapacity = Integer.MAX_VALUE / 2, oldCapacity = minCapacity - 1
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
fail-fast机制的实现
fail-fast机制也叫作”快速失败”机制,是Java集合中的一种错误检测机制。
在对集合进行迭代过程中,除了迭代器可以对集合进行数据结构上进行修改,其他的对集合的数据结构进行修改,都会抛出ConcurrentModificationException错误。
这里,所谓的进行数据结构上进行修改
,是指对存储的对象,进行add,set,remove操作,进而对数据发生改变。
ArrayList中,有个modCount的变量,每次进行add,set,remove等操作,都会执行modCount++。
在获取ArrayList的迭代器时,会将ArrayList中的modCount保存在迭代中,
每次执行add,set,remove等操作,都会执行一次检查,调用checkForComodification方法,对modCount进行比较。
如果迭代器中的modCount和List中的modCount不同,则抛出ConcurrentModificationException
final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} @Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
} public boolean hasPrevious() {
return cursor != 0;
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
序列化
transient Object[] elementData;
// non-private to simplify nested class access
transient修饰符让elementData无法自动序列化,这样的原因是,数组内存储的的元素其实只是一个引用,单单序列化一个引用没有任何意义,反序列化后这些引用都无法在指向原来的对象。ArrayList使用writeObject()实现手工序列化数组内的元素。
/**
* Save the state of the <tt>ArrayList</tt> instance to a stream (that
* is, serialize it).
*
* @serialData The length of the array backing the <tt>ArrayList</tt>
* instance is emitted (int), followed by all of its elements
* (each an <tt>Object</tt>) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size); // Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
} if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
} /**
* Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff
s.defaultReadObject(); // Read in capacity
s.readInt(); // ignored if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size); Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
使用场景
ArrayList的使用场景主要从其优缺点来考虑的:
优点:
get,set,时间复杂度为O(1)
add(一般都是在末尾插入),时间复杂度为O(1),最差情况下(往头部插入数据),时间复杂度O(n)
数据存储是顺序的
缺点:
remove,时间复杂度为O(n),最优情况下(移除末尾元素),时间复杂度为O(1)
ArrayList底层使用数组存储数据,数组是不能自动扩容的,因此在发生扩容的情况下,需要移动大量的元素。
ArrayList大小很大的时候,会存在空间浪费(可以通过trimToSize方法,清除空闲空间)
数组大小是由限制的,受jvm和机器的影响,当扩容超出上限时,ArrayList会抛出异常
插入操作多,数据量不大,顺序存储时,可以考虑使用ArrayList
多线程情况下:
ArrayList所有的操作,都不是同步的,因此ArrayList不是线程安全的。
如果考虑到线程安全的话,可以使用CopyOnWriteArrayList或者外部同步ArrayList(List list = Collections.synchronizedList(new ArrayList(…));)
思考
1.remove方法中,为什么会将数组对应的元素置为null?
ArrayList内部使用数组实现一套管理对象的机制,remove操作中,已经将元素的数量-1了,ArrayList认为该对象已经被移除了,应该被jvm回收。
但是,对于jvm来说,该值仍然保存在数组中,ArrayList持有这个对象的引用,在jvm发生GC时,这个对象是不对被jvm回收,这样就会造成内存泄露了。
2.查找元素的方法中(比如indexOf),为什么需要对元素进行null值判断?
判断对象是否相等,有两个方面,1.对象存储的地址;2.对象的内容。
==,是用来比较两个对象的地址是否相等,一般来说,两个对象的地址相同,那么这两个对象可以认为是相同的对象
equals方法,是用来比较对象内容的,当然,也可以重载该方法,直接比较对象地址;Object对象的equals方法,是比较地址的。
一般来说,重载equals方法的同时,也要重载hashCode方法的,重载hashCode方法,必须得遵守6个原则:
自反性:对于任何非null的引用值x,x.equals(x),必须返回true
传递性:对于任何非null的引用值x,y,z,如果x.equals(y) 为true,且y.equals(z)为true,那么x.equals(z)必须为true
对称性:对于任何非null的引用值x,y,如果x.equals(y)为true,那么y.equals(x)必须为true
非空性:对于任何非null的引用值x,x.equals(null)必须为false
一致性:对于任何非null的引用值x,y,如果多次调用equals方法,如果x和y比较的值没有改变,那么x.equals(y)就会一致性返回true或者false
为什么重载equals方法,一般要重载hashCode方法?
重载equals方法,可以不重载hashCode方法,但是一般情况,不建议这么做。
hashCode方法,使用来求出对象的Hash值,
重载hashCode方法主要是为了提高一些容器(比如HashMap,Hashtable)进行hash运算的效率,而且也可以避免出现一些错误(比如HashSet容器的操作)
对于元素进行null值判断,我认为主要是为了效率考虑,如果是null值的话,可以直接比较地址,而非空值,则需要通过equals方法来比较,由于ArrayList是泛型的,
所以其添加的元素,可能重载equals方法,自定义了判断的原则。
3.grow方法中,对新容量大小进行判断,为什么会定义MAX_ARRAY_SIZE的?
ArrayList底层存储是使用数组来实现的,所以ArrayList存储文件的大小必定受数组大小的限制,所以在扩容中,可以看到ArrayList对新容量大小进行逻辑判断。
影响数组最大值:
理论上最大值为Integer.MAX_VALUE(2^32 - 1)
-
对象头限制,不同类型的元素,可创建数组的最大值是不同的,byte是1字节,int是4字节
比如jvm可用内存为1M,32位机器下,
int[] bytes = new int[1024 * 1024 / 4];
byte[] bytes = new byte[1024 * 1024]; -
jvm可用内存大小限制
比如jvm可用内存为1M,32位机器下,
byte[] bytes = byte[1024 * 1024]
至于为什么MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
主要是在64为机器中,对象的