Python中的heapq模块提供了一种堆队列heapq类型,这样实现堆排序等算法便相当方便,这里我们就来详解Python中heapq模块的用法,需要的朋友可以参考下
heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。
打印 heapq 类型
?1234567891011121314151617181920212223242526 | import
import
from
import def
= 36 , fill = ' ' ): output =
last_row =
1 for
in
(tree): if
row =
(math.floor(math.log(i + 1 , 2 ))) else : row =
if
=
output.write( '\n' ) columns =
* * row col_width =
(math.floor((total_width *
) /
output.write( str (n).center(col_width, fill)) last_row =
print
print * total_width print return data =
range ( 1 , 8 ), 7 ) print
, data show_tree(data) |
打印结果
?1234567 | data: 3 2 6 5 ------------------------- heapq.heappush(heap, |
push一个元素到heap里, 修改上面的代码
?12345678 | heap =
data =
range ( 1 , 8 ), 7 ) print
, data for
in
print % i heapq.heappush(heap, i) show_tree(heap) |
打印结果
?1234567891011121314151617181920212223242526272829303132 | data: add 6 ------------------------------------ add 1 6 ------------------------------------ add 1 6 5 ------------------------------------ add 1 4 5 6 ------------------------------------ add 1 3 5 6 4 ------------------------------------ add 1 3 5 6 4 7 ------------------------------------ add 1 3 2 6 4 7 5 ------------------------------------ |
根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。
heapq.heapify(list)
将list类型转化为heap, 在线性时间内, 重新排列列表。
?12345 | print
, data heapq.heapify(data) print
, data show_tree(data) |
打印结果
?12345678 | data: data: 1 3 2 7 ------------------------------------ heapq.heappop(heap) |
删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。
?123456789101112 | data =
range ( 1 , 8 ), 7 ) print
, data heapq.heapify(data) show_tree(data) heap =
while
i =
print % i show_tree(data) heap.append(i) print
, heap |
打印结果
?12345678910111213141516171819202122232425262728293031323334353637 | data: 1 4 2 7 5 6 3 ------------------------------------ pop 2 4 3 7 5 6 ------------------------------------ pop 3 4 6 7 5 ------------------------------------ pop 4 5 6 7 ------------------------------------ pop 5 7 6 ------------------------------------ pop 6 7 ------------------------------------ pop 7 ------------------------------------ pop ------------------------------------ heap: |
可以看到已排好序的heap。
heapq.heapreplace(iterable, n)
删除现有元素并将其替换为一个新值。
?123456789 | data =
range ( 1 , 8 ), 7 ) print
, data heapq.heapify(data) show_tree(data) for
in
8 , 9 , 10 ]: smallest =
print % (smallest, n) show_tree(data) |
打印结果
?123456789101112131415161718192021222324252627 | data: 1 2 3 5 6 7 4 ------------------------------------ replace 2 5 3 8 6 7 4 ------------------------------------ replace 3 5 4 8 6 7 9 ------------------------------------ replace 4 5 7 8 6 10 9 ------------------------------------ |
heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)
返回列表中的n个最大值和最小值
?123456 | data =
( 1 , 6 ) l =
3 , data) print
# [5, 4, 3] s =
3 , data) print
# [1, 2, 3] |
PS:一个计算题
构建元素个数为 K=5 的最小堆代码实例:
1234567891011121314151617181920212223242526272829303132 | #!/usr/bin/env # # # import
import
heap =
heapq.heapify(heap) for
in
( 15 ): item =
10 , 100 ) print
, item, if
(heap) > =
: top_item =
0 ] # smallest in heap if
# min heap top_item =
print
, top_item, heapq.heappush(heap, item) print
, item, else : heapq.heappush(heap, item) print
, item, pass print
pass print
print
heap.sort() print
|
结果: