HanLP用户自定义词典源码分析

时间:2022-04-23 22:20:25

HanLP用户自定义词典源码分析

1. 官方文档及参考链接

2. 源码解析

分析 com.hankcs.demo包下的DemoCustomDictionary.java 基于自定义词典使用标准分词HanLP.segment(text)的大致流程。首先把自定义词添加到词库中:

CustomDictionary.add("攻城狮");
CustomDictionary.insert("白富美", "nz 1024");//指定了自定义词的词性和词频
CustomDictionary.add("单身狗", "nz 1024 n 1")//一个词可以有多个词性

添加词库的过程包括:

  • 若启用了归一化,则会将自定义词进行归一化操作。归一化操作是基于词典文件 CharTable.txt 进行的。

  • 判断自定义词是否存在于自定义核心词典中

      public static boolean add(String word)
      {
          if (HanLP.Config.Normalization) word = CharTable.convert(word);
          if (contains(word)) return false;//判断DoubleArrayTrie和BinTrie是否已经存在word
          return insert(word, null);
      }

  • 当自定义词不在词典中时,构造一个CoreDictionary.Attribute对象,若添加的自定义词未指定词性和词频,则词性默认为 nz,频次为1。然后试图使用DAT树将该 Attribute对象添加到核心词典中,由于我们自定义的词未存在于核心词典中,因为会添加失败,从而将自定义词放入到BinTrie中。因此,不在核心自定义词典中的词(动态增删的那些词语)是使用BinTrie树保存的。
      public static boolean insert(String word, String natureWithFrequency)
      {
          if (word == null) return false;
          if (HanLP.Config.Normalization) word = CharTable.convert(word);
          CoreDictionary.Attribute att = natureWithFrequency == null ? new CoreDictionary.Attribute(Nature.nz, 1) : CoreDictionary.Attribute.create(natureWithFrequency);
          if (att == null) return false;
          if (dat.set(word, att)) return true;
          //"攻城狮"是动态加入的词语. 在核心词典中未匹配到,在自定义词典中也未匹配到, 动态增删的词语使用BinTrie保存
          if (trie == null) trie = new BinTrie<CoreDictionary.Attribute>();
          trie.put(word, att);
          return true;
      }

将自定义添加到BinTrie树后,接下来是使用分词算法分词了。假设使用的标准分词(viterbi算法来分词):

List<Vertex> vertexList = viterbi(wordNetAll);

分词具体过程可参考:

分词完成之后,返回的是一个 Vertex 列表。如下图所示:

HanLP用户自定义词典源码分析

然后根据 是否开启用户自定义词典 配置来决定将分词结果与用户添加的自定义词进行合并。默认情况下,config.useCustomDictionary是true,即开启用户自定义词典。

        if (config.useCustomDictionary)
        {
            if (config.indexMode > 0)
                combineByCustomDictionary(vertexList, wordNetAll);
            else combineByCustomDictionary(vertexList);
        }

combineByCustomDictionary(vertexList)由两个过程组成:

  • 合并DAT 树中的用户自定义词。这些词是从 词典配置文件 CustomDictionary.txt 中加载得到的。

  • 合并BinTrie 树中的用户自定义词。这些词是 代码中动态添加的:CustomDictionary.add("攻城狮")

  //DAT合并
  DoubleArrayTrie<CoreDictionary.Attribute> dat = CustomDictionary.dat;
  ....
    // BinTrie合并
  if (CustomDictionary.trie != null)//用户通过CustomDictionary.add("攻城狮"); 动态增加了词典
  {
      ....

合并之后的结果如下:

HanLP用户自定义词典源码分析

3. 关于用户自定义词典

总结一下,开启自定义分词的流程基本如下:

  • HanLP启动时加载词典文件中的CustomDictionary.txt 到DoubleArrayTrie中;用户通过 CustomDictionary.add("攻城狮");将自定义词添加到BinTrie中。
  • 使用某一种分词算法分词
  • 将分词结果与DoubleArrayTrie或BinTrie中的自定义词进行合并,最终返回输出结果

HanLP作者在HanLP issue783:上面说:词典不等于分词、分词不等于自然语言处理;推荐使用语料而不是词典去修正统计模型。由于分词算法不能将一些“特定领域”的句子分词正确,于是为了纠正分词结果,把想要的分词结果添加到自定义词库中,但最好使用语料来纠正分词的结果。另外,作者还说了在以后版本中不保证继续支持动态添加自定义词典。以上是阅读源码过程中的一些粗浅理解,仅供参考。